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CHAPTER – I [A] 
 

BRAHMAPUTRA MAIN STEM 
 
SATELLITE DATA BASED ANALYSIS OF CHANNEL MORPHO-
DYNAMIC STUDY FOR EROSION CONTROL OF BRAHMAPUTRA 
RIVER SYSTEM  
 
INTRODUCTION 

The river Brahmaputra has been the lifeline of northeastern India since ages. 
This mighty river runs for 2880 kms through China, India and Bangladesh. Any 
alluvial river of such magnitude has problems of sediment erosion-deposition 
attached with it; the Brahmaputra is no exception. The problems of flood, erosion 
and drainage congestion in the Brahmaputra basin are gigantic. The Brahmaputra 
river is characterized by its exceedingly large flow, enormous volume of sediment 
load, continuous changes in channel morphology, rapid bed aggradations and bank 
line recession and erosion. The river has braided channel in most of its course in 
the alluvial plains of Assam. The lateral changes in channels cause severe erosion 
along the banks leading to a considerable loss of good fertile land each year. Bank 
oscillation also causes shifting of outfalls of its tributaries bringing newer areas 
under waters. Thousands of hectares of agricultural land is suffering from severe 
erosion continuously in the Brahmaputra basin covering parts of states like Assam, 
Arunachal Pradesh, Meghalaya, Nagaland and Manipur.  

In order to tackle the problem of floods and erosion various agencies including 
state, central government and autonomous institutions are engaged in planning and 
execution of flood management programs in the north eastern region. To achieve 
effective flood management programs a variety of structural and non structural 
measures are adopted. These result in reasonable degree of protection to the flood 
prone areas in the   Brahamaputra valley. However, due to the inherent widening 
characteristic of the Brahmaputra river they do not sustain and adversely affect the 
benefits anticipated while implementing the flood control and anti-erosion works. High 
floods cause large scale breaches in the existing embankments bringing vast areas 
under flood inundation. 

Stream-bank erosion and its effects on channel evolution are essential 
geomorphic research problems with relevance to many scientific and engineering 
fields. Stream-bank erosion can damage infrastructure such as highway and bridges, 
can cause significant problems in adjusting water-discharge rating curves, and may 
represent up to 80 to 90% of the sediment load in streams and rivers (Simon and 
Rinaldi, 2000). It contributes to total maximum daily loads (TMDLs), can be a 
significant source of nonpoint-source sediment and nutrient pollution, and can have 
adverse effects on water quality and fish spawning habitat. However, bank erosion 
also is beneficial and an integral part of many river ecosystem processes (Florsheim 
et al., 2008). For example, coarse sediment from bank erosion can provide substrate 
for fish spawning (Flosi et al., 1998) and sediment for crane roosting habitat 
(Johnson 1994; U.S. Geological Survey, 2005). Irregular banks provide habitat for 
invertebrates, fish, and birds (Florsheim et al., 2008), and areas disturbed by erosion 
and deposition provide substrate for the establishment of riparian vegetation (Miller 
and Friedman, 2009). Moreover, knowledge of the dynamics of bank erosion is 
essential for planning dam removal projects and for designing river restoration 
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projects that accommodate the natural river migration processes that erode banks 
and build floodplains (Moody and Meade, 2008) on various time scales (Couper, 
2004). Therefore, a better understanding on river channel changes is of great 
importance for river engineering and environmental management. 
 
 
LITERATURE REVIEW 

Several investigators have used remotely sensed data for ascertaining 
channel changes of Brahmaputra River and its tributaries. NRSA (1980) has done 
the river migration study of the Brahmaputra using airborne scanner survey and to 
carry out repetitive survey to monitor changes in landuse, river channels and banks 
to provide a base for estimating the response of the rivers to flood events. Sarma 
and Basumallick (1980) studied the bankline migration of the Burhi Dihing River 
(southern tributary of Brahmaputra river) using topographic maps and field survey.  
Bardhan (1993) studied the channel behavior of the Barak river using satellite 
imagery and other data to identify the river stretches, if any, which remained 
reasonably stable during the period 1910-1988. SAC (Space Application Centre), 
Ahmedabad and Brahmaputra Board (1996) jointly took up a study to access the 
extent of river erosion in Majuli island in order to identify and delineate the areas of 
the island which have undergone changes along the bankline due to dynamic 
behaviour of the river. Based on this report and other collateral data, Brahmaputra 
Board (1997) has prepared a status report on the erosion problem of Majuli Island.  
Naik et al. (1999) studied the erosion at Kaziranga National Park using remote 
sensing data. Goswami et al. (1999) carried out a study on river channel changes of 
the Subansiri (northern tributary of Brahmaputra River) in Assam, India using 
information of topographic sheet and satellite data. Mani et al. (2003) studied the 
erosion in Majuli island using remote sensing data. Bhakal et al. (2005) have 
quantified the extent of bank erosion in Brahmaputra River near Agyathuri in Assam, 
India over a period of thirty years (1973-2003) using remote sensing data integrated 
with GIS. Kotoky et al (2005) studied selected reach of Brahamputra with two sets of  
Survey of India toposheets (1914 and 1975) and a set of IRS satellite images (1998, 
IRS-1B, LISS II B/W geocoded data by dividing the 270 km channel configuration 
from Panidihing Reserve Forest to Holoukonda Bil of the Brahmaputra River into ten 
segments. Sarma et al. (2007) studied the nature of bankline migration as well as 
made a quantitative assessment of the total amount of bank area subjected to 
erosion at different parts of Burhi Dihing River (southern tributary of Brahmaputra 
river) course during a period of time from 1934 to 2004 using Survey of India (SOI) 
toposheets, aerial photographs and IRS satellite data. Das and Saraf (2007) made a 
study in respect to a trend in river course changes of Brahmaputra river and 
influence of various surrounding geotectonic features for varying period between 
1970-2002 for different sections of the river using Landsat-MSS, TM and ETM 
images. However, a comprehensive study of the bank erosion and channel migration 
of the entire Brahmaputra in India including its major tributaries with most recent 
satellite data has not yet been reported in the literature.  

Fluvial landforms are produced by the action of flowing water in the terrestrial 
environment, whereas fluvial geomorphic processes are those natural processes that 
produce, maintain and change fluvial landforms. The channel pattern or landform of 
a reach of an alluvial river reflects the hydrodynamics of flow within the channel and 
the associated processes of sediment transfer and energy dissipation. Channel 
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patterns form a continuum in response to varying energy conditions ranging from 
straight and meandering to braided forms. Generally, braiding is favoured by high 
energy fluvial environments with steeper gradients, large and variable discharges, 
dominant bed load transport and non-cohesive banks lacking stabilization by 
vegetation (Richards, 1982). The secondary flow component also contributes to the 
growth of channel deformations (Bathurst et al., 1979). 

Kotoky et al (2005) studied selected reach of Brahamputra with two sets of 
Survey of India toposheets (1914 and 1975) and a set of IRS satellite images 
covering the cloud-free period. For assessing rate of erosion, the channel 
configuration was divided for a distance of 270 km from Panidihing Reserve Forest 
to Holoukonda Bil of the Brahmaputra River into ten segments (I to X) at an interval 
of 15 minute east longitude in downstream direction. The bank-lines were 
superimposed upon each other and the areas subjected to erosion and deposition 
were measured with the help of a digital planimeter. Kotoky et al (2005) reported that 
the activity of erosion/deposition processes that operated was not similar for the 
periods 1914–75 and 1975–98. 

However, Kotoky’s(2005) work was restricted to some of the limited stretches 
of river Brahmaputra and lacks a representative braiding tendency of the river in 
Assam flood plains, moreover braiding phenomenon which has been the major 
stakeholder of causative erosion and deposition was not dealt with. The remote 
sensing data used for study pertained to previous IRS sensor namely LISS I with 
coarse resolution resulting in  possibilities of enhanced discrepancy while conducting 
analysis for studying bank shifting trend of River Brahmaputra.   
 
Existing Braiding Indicators 

Several past studies had presented discrimination between the straight, 
meandering, and braided streams on the basis of discharge and channel slope. Lane 
(1957) suggested the following criterion for the occurrence of braiding. 
S > 0.004 (Qm)-0.25            (1) 
Where, Qm = mean annual discharge; and S = channel slope.  

Using bank full discharge Qb, Leopold and Wolman in 1957 (Richards, 1982) 
proposed the relationship for braiding to occur, which also predicts braids at higher 
slopes and discharges: 
S > 0.013 Qb -0.44           (2)  
Where, Qb = bank full discharge. 

Antropovskiy (1972) developed the following criterion for the occurrence of 
braiding  
 S > 1.4Qb -1   

           (3)   
Leopold and Wolman (1957) also indicated that braided and meandering 

streams can be separated by the relationship:  
S = 0.06 Q 0. 44           (4)  
Where, S = channel; and Q = water discharge.  

However, these indicators have been criticized by Schumm and Khan (1972) 
as none of these recognizes the importance of sediment transport. These results 
imply a higher power expenditure rate in braided streams, a conclusion reinforced by 
Schumm and Khan’s (1972) flume experiments. However, none of these 
investigators recognizes the control of channel pattern by sedimentology. Since, bed 
material transport and bar formation are necessary in both meander and braid 
development processes, the threshold between the patterns should relate to bed 
load. 
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Henderson (1961) re-analyzed Leopold and Wolman's data to derive an 
expression including d50, median grain size (mm): 
S > 0.002 d50 

1.15 Qb 
-0.46            (5)  

Where, d50 = median grain size 
According to equation (5), a higher threshold slope is necessary for braiding in 

coarse bed materials. Bank material resistance affects rate of channel migration and 
should also influence the threshold, although its effect may be difficult to quantify and 
also be non-linear since greater stream power is required to erode clays and cobbles 
than sands. 

Parker's stability analysis (1976) indirectly illustrates the effects of bank 
material resistance by defining the meander - braid threshold as: 
S/Fr = D/B             (6)  

Where, D = mean depth of the flow; B = width of the stream, and Fr = Froude 
number. However, depth, width and Froude number may be expressed in terms of 
discharge and bank silt-clay percentage, as suggested by Schumm (Richards, 
1982). Meandering occurs when S/Fr ≤ D/B, braiding occurs when S/Fr ≥ D/B, and 
transition occurs in between S/Fr ~ D/B. 

Ferguson (1981) suggested for braiding to occur, which predicts steeper 
threshold slopes for braiding in channels with resistant silty banks.  
S > 0.0028 (Qb)-0.34 Bc

0.90                                                                                                                          (7)  
Where, Bc = percentage of silty clay content in the bank material. 
Measures of the degree of braiding generally fall into two categories: (i) the 

mean number of active channels or braid bars per transect across the channel belt; 
and (ii) the ratio of sum of channel lengths in a reach to a measure of reach length 
(total sinuosity). The sinuosity, P is thalweg length / valley length. 

Smith (1970) illustrated the measurement of cross - section bed relief, 
measured by the index. 

  
                                                  (8) 

Where, Ti = height maxima between hollows; ti = minima between peaks; BL= 
transect length; and Te = end heights. 

Sharma (2004) developed Plan Form Index (PFI), Flow Geometry Index 
(FGI), and Cross-Slope ratio for identifying the degree of braiding of highly braided 
river. The PFI, FGI and Cross- Slope formulae have been given below: 

Plan Form Index =
N

x
B
T 100

          (9)  

Flow Geometry Index = Nx
WxD

xd ii ][∑                   

(10)  

Cross-Slope =
).(

2
levelbedAvlevelBank

BL

−
                            (11) 

where, T = flow top width; B= overall width of the channel; BL = Transect 
length across river width; N = number of braided channel; di and xi are depth and top 
lateral distance of submerged sub-channel; and D = hydraulic mean depth. 
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Fig. 1 Definition sketch of PFI 

 
Plan Form Index (PFI) in Equation 9 (Definition sketch as shown in Fig. 1) 

reflects the fluvial landform disposition with respect to a given water level and its 
lower value is indicative of higher degree of braiding. For providing a broad range of 
classification of the braiding phenomenon, the following threshold values for PFI are 
proposed by Sharma (2004). 
  Highly Braided:   PFI < 4 
  Moderately Braided:   19 > PFI > 4 
  Low Braided:    PFI > 19 
 
 
STUDY OBJECTIVE 

The present paper briefly describes a study of the Brahmaputra river - its entire 
course in Assam from upstream of Dibrugarh up to the town Dhubri near Bangladesh 
border for a stretch of around 620 kms and i ts major tributaries (13 northern and 
10 southern) for a period of recent 18 years (1990-2008) using an integrated 
approach of Remote Sensing and Geographical Information System (GIS). The 
satellite data has provided the information on the channel configuration of the river 
system on repetitive basis revealing much needed data on the changes in river 
morphology, erosion pattern and its influence on the land, stable and unstable 
reaches of the river banks, changes in the main channel of the Brahmaputra river, 
changes in the major tributaries of the Brahmaputra river, etc 

In this study, it is endeavored to assess the channel morphological changes 
actuated by stream bank erosion process. The newer braiding indicator PFI for 
Brahmaputra River formulated by Sharma (2004) has been adopted in the study to 
analyze the braiding behavior. Attempt has been made to assess the temporal and 
spatial variation of braiding intensities along the whole stretch of Brahmaputra in 
Assam plains of Indian Territory based on the remote sensing image analyses, which 
is the forcing function of erosion and thereby causing severe yearly land loss. 
 
THE STUDY AREA 
  The Brahmaputra river, termed a moving ocean, is an antecedent snow fed 
river which flows across the rising young Himalayan Range. Geologically, the 
Brahmaputra is the youngest of the major rivers of the world. It originates at an 
altitude of 5,300 m about 63 Km south-east of the Mansarowar  lake in Tibet. The 
river is known as Psangpo in Tibet. Flowing eastward for 1,625 km. over the Tibetan 
plateau, the Tsangpo enters a deep narrow gorge at Pe (3,500 m.) and continues 
southward across the east-west trending ranges of the Himalayas, viz. the Greater 

T = T1 + T2 
Water Level 

 

B 

 
T1 T2 
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Himalayas, Middle Himalayas and sub-Himalayas. After crossing the Indo-China 
border near Pasighat the river is called as the Siang or the Dihang. Two major rivers 
namely the Dibang and the Lohit join the Dihang  at a short distance upstream of 
Kobo to form the river Brahmaputra. The river flows westward through Assam for 
about 700 Km distance from Dhola until dowmstream of the town Dhubri, where it 
abruptly turns south and enters Bangladesh. The gradient of the Brahmaputra river is 
as steep as 4.3 to 16.8 m./km. in the gorge section upstream of Pasighat, but near 
Guwahati it is as flat as 0.1m./km. The dramatic reduction in the slope of the 
Brahmaputra as it cascades through one of the world’s deepest gorges in the 
Himalayas before flowing in to the Assam plains explains the sudden dissipation of 
the enormous energy locked in it and the resultant unloading of large amounts of 
sediments in the valley downstream. 
  In the course of its 2,880 km. journey, the Brahmaputra receives as many as 
22 major tributaries in Tibet, 33 in India and three in Bangladesh. The northern and 
southern tributaries differ considerably in their hydro-geomorphological 
characteristics owing to different geological, physiographic and climatic conditions. 
The north bank tributaries generally flow in shallow braided channels, have steep 
slopes, carry a heavy silt charge and are flashy in character, whereas the south bank 
tributaries have a flatter gradient, deep meandering channels with beds and banks 
composed of fine alluvial soils, marked by a relatively low sediment load. 
  Due to the colliding Eurasian (Chinese) and Indian tectonic plates, the 
Brahmaputra valley and its adjoining hill ranges are seismically very unstable. The 
earthquakes of 1897 and 1950, both of Richter magnitude 8.7, are among the most 
severe in recorded history. These earthquakes caused extensive landslides and rock 
falls on hill slopes, subsidence and fissuring in the valley and changes in the course 
and configuration of several tributary rivers as well as the main course 
  The drainage basin of the Brahmaputra extends to an area of about 580,000 
km2, from 82°E to 97° 50' E longitudes and 25° 10' to 31° 30' N latitudes. The basin 
spans over an area of 293,000 km2 (50.51%) in Tibet (China), 45,000 km2 (7.75%) in 
Bhutan, 194,413 km2 (33.52%) in India and 47,000 km2 (8.1%) in Bangladesh. Its 
basin in India is shared by six states namely, Arunachal Pradesh (41.88%), Assam 
(36.33%), Nagaland (5.57%), Meghalaya (6.10%), Sikkim (3.75%) and West Bengal 
(6.47%) (59). 

For the present study, a reach of 620 Km on the main stem of Brahmaputra 
River, i.e., its entire course in Assam from upstream of Dibrugarh up to the town 
Dhubri near Bangladesh border has been considered. Twenty three major tributaries 
(13 northern and 10 southern) with in India have also been considered.  
 
 
 
 
 
 
 
 
 
  



 11 

 
Fig. 2:  Study Area 

 
 
DATA USED 

The basic data used in this study are digital satellite images of Indian 
Remote Sensing (IRS) LISS-I and LISS-III sensor, comprising of scenes for the 
years 1990, 1997, and 2008. In order to bring all the images under one geometric 
co-ordinate system, these are geo-referenced with respect to Survey of India 
(1:50,000 scale) topo-sheets using second order polynomial. IRS P6 LISS images of 
1990, 1997 and 2008 years are geometrically rectified with reference to the Landsat 
images of the same area. The UTM projection and WGS 84 datum has been taken 
for geo-referencing. Rectification of the images was done with a  
residual RMS (root mean square error) of less than 1. Subsequently the re-sampling 
was performed at 23.5 m resolution using Nearest Neighborhood technique. 

The entire river from Dhubri to upper Assam beyond Dibrugarh has been 
divided into 12 reaches. Each reach comprised of 10 cross sections. The bank line of 
the Brahmaputra River is demarcated from each set of imageries and the channel 
patterns are digitized using Arc GIS software. Cross sections are shown Fig. 2. 

 The spatial resolution of LISS-III is 23.5 m. The data used in the analysis 
have been presented in Table 1. ERDAS IMAGINE 8.6 image processing software 
has been used to perform the image processing works. Then satellite images of the 
other years were co-registered using image-to-image registration technique. 
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TABLE 1:  CHARACTERISTICS OF THE REMOTE SENSING DATA USED 

Satellite 
/sensor 

Path/row Acquisition Spatial 
resolution 

Spectral bands and 
channels  

IRS 1C and D/ 
LISS-III 
(Standard 
Product) 

112/52 1990, 1997, 
2007-08 

23.5m Visible  band- 
(Green channel) (0.52 
-0.59µm)  
Visible  band- 
Red channel (0.62-
0.68µm)  
Near infrared (NIR) 
(0.77 - 0.86µm) 

IRS 1C and D/ 
LISS-III 
(Standard 
Product) 

112/53 1990, 
1997,2007-
08 

23.5m 

For convenience in computing, the study area of around 622.73 km from Dhubri to 
Kobo beyond Dibrugarh in Upper Assam is considered as shown in Figs 2. 
 
METHODOLOGY 

Appropriate GIS applications are done to precisely extract bank line 
information. Segment wise satellite-derived plan-form maps have been developed for 
the discrete years i.e. 1990, 1997 and 2007-08.  
 
Data Geo Referencing and Image Processing 

One set of Survey of India topo-sheets (1965) and digital satellite images of 
IRS LISS-I and LISS-III sensors, comprising scenes for the years 1990, 1997 and 
2007-08 are used for the present study. In order to assess the rate of erosion, maps 
and imagery are registered and geo-referenced with respect to Survey of India 
(1:50,000 scale) toposheets using second order polynomial. Using ERDAS imagine 
software, the satellite data have been geo-referenced with respect to 1:50,000 
Survey of India topo-sheets. 

The geo-referencing was done by the hardcopy map on digitizing table using 
second order equation with root mean square error less than 1.0 and nearest 
neighborhood re-sampling technique to create a geo-referenced image of pixel size 
23.5m x 23.5m. Subsequently other images were also registered with the geo-
referenced image using image-to-image registration technique. The registered 
images for different dates pertaining to study area were used for further analysis.  
 
Delineation of River Bank Line  

For convenience, the main river has been divided into 120 strips, and 
reference cross sections were drawn at the boundary of each strip. Each ten cross 
sections are grouped as a reach with numbering from downstream to upstream of 
the river (of equal base length (Fig. 3; Table -2). Base line of Latitude 25.966o and 
Longitude 90o E has been taken as permanent reference line. The derived data for 
each cross section from satellite images of years 1990, 1997, 2008 have been 
analyzed and the bank lines are also digitized for all the years. The length of arcs of 
both the left and right banks for all the above years are found out using GIS 
software. The years 1990 , 1997 and 2008 have been taken for analyzing erosion 
and deposition along the river left bank as well as right bank. 
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Fig.3: 120 strips of left bank 
 
Intermediate channel widths, and total widths of channel at each predefined 

cross sections are measured using GIS software tools for computing Plan Form 
Indices for each cross sections for further analysis.  

Erosion in north and south banks of the river area during the study period 
(that is 1990-2007-08 and 1997-2007-08) is estimated by GIS software tools through 
delineating the river bank lines and drawing polygons within bank line variations 
within the study period   

Remote sensing satellite data having ability to provide comprehensive, 
synoptic view of fairly large area at regular interval with quick turn around time 
integrated with GIS techniques makes it appropriate and ideal for studying and 
monitoring river erosion and its bank line shifting. Various studies in this regard have 
been carried out for some major rivers all over the world. Surian (1999) reported the 
channel changes of the Piave River in the Eastern Alps, Italy, which occurred in 
response to human interventions in the fluvial system through a historical analysis 
using maps and aerial photographs. A typical study of channel migration by Yang et 
al. (1999) in Yellow river (China) made use both analog and digital data with a time 
sequential imageries of 19 dates from 1976 to 1994. Rinaldi (2003) presented 
changes in channel width of the main alluvial rivers of Tuscany (central Italy) during 
the 20th century by comparing available aerial photographs (1954 and 1993-98). 
Surian and Rinaldi (2003) reviewed all existing published studies and available data 
on most Italian rivers that experienced considerable channel adjustment during the 
last centuries due to various types of human disturbance. Fuller et al (2003) 
quantified three-dimensional morphological adjustment in a chute cutoff (breach) 
alluvial channel using Digital Elevation Model (DEM) analysis for a 0.7 km reach of 
the River Coquet, Northumberland, UK.  Li et al (2007) examined human impact on 
channel change in Jianli reach of the middle Yangtze River of China employing 
1:100,000 channel distribution maps from 1951, 1961 and 1975 and 1:25,000 
navigation charts from 1981 and 1997 to reconstruct channel change in the study 
reach.  Kummu et al (2008) assessed bank erosion problems in the Vientiane–Nong 
Khai section of the Mekong River, where the Mekong borders Thailand and Lao PDR 
using two Hydrographic Atlases dated 1961 and 1992, and SPOT5 satellite images 
of 2004 and 2005 with a resolution of 2.5m in natural colours.  
 
 
 
 
 

Base line 
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PLAN FORM INDEX (PFI) 
Plan Form Index (PFI) reflects the fluvial landform disposition with respect to a 

given water level and its lower value is indicative of higher degree of braiding.  
The computed Plan Form Index for each reference cross-section totalling 120 

in numbers across the study reaches are plotted against reach cross-section number 
in Fig. 7 for three discrete years. From the plot, it can be readily inferred that from 
1990 to 2007-08, the PFI values by and large decreases significantly indicating the 
increase in braiding intensities in majority of cross sections considering the fixed 
threshold values of PFI given for measuring braiding intensity mentioned in Sec. 2 
(Sharma, 2004) of this paper.  

The analysis can further be extended by computing mean PFI values for 
reach-1 to reach 12 comprising of ten cross-sections each, shown in tables 3, 4, 5 
for the discrete years. Similarly, extreme values that are maximum PFI (indicating 
least braiding within the reach) and minimum PFI (indicating highest braiding within 
the reach) for each reach are computed and shown in Table-6. The corresponding 
plot for Mean, Minimum and Maximum PFI against reach numbers are plotted and 
shown in Fig. 4, 5 and 6 respectively. Mean PFI enveloping with maximum and 
minimum cross-sectional PFI suggest the ranges of variation in braiding intensities 
within a reach.  It can be easily figured out that maximum values are predominant in 
the year 1990, whereas in 2007-08 minimum values are predominant. All three 
statistically measured PFIs are registering  little  changes or similar trend in three to 
four identified reaches with rock-outcrops numbered 2, 4 ,6-7 and 9, which are in the 
vicinity of Jogighopa, Guwahati, Tezpur and Bessamora in Majuli. 

It strongly suggests that irrespective of the time, the aforementioned four 
discrete reaches show little changes in braiding intensity and pattern. It confirms the 
existence of the aforesaid four geological control points which hold the river, and in 
between there are intermittent fanning out of the river with time. Other than these 
river control points, more braiding is expected where bank line configurations and 
characteristics are conducive for braiding to occur in other reaches.   

As discussed, the graphical plots of Plan Form Index for the Brahmaputra 
River shows increasing trend thereby registering an increasing level of braiding, as 
can be seen from the threshold limits as described in Sec. 2 of this paper. Plots for 
all reference cross sections for the years 1990, 1997 and 2007-08 between PFI’s 
and cross section numbers shows the increasing trend of braiding with time. These 
plots clearly demonstrate the rationality of using the Plan Form Index as a measure 
of braiding and closely conform to the actual physical situation of the occurrence of 
braiding vividly depicted in satellite images. In light of the threshold values of Plan 
Form Index, it can be readily inferred from graphical plots showing maximum, 
minimum and mean values of PFIs of cross sections that have heavy with moderate 
and low braiding characteristics resulting in a very complex channel hydrodynamics.  
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TABLE 2: IDENTIFICATION OF REACHES IN RESPECT OF  
THE LOCATION IN THE VICINITY  

 
Reach Locations in Vicinity 

1 Dhubri  
2 Goalpara  
3 Palasbari  
4 Guwahati  
5 Morigaon (Near Mangaldai) 
6 Morigaon (Near Dhing) 
7 Tezpur  
8 U/s of Tezpur (Near Gohpur) 
9 Majuli 
10 U/s of Majuli (Near Sibsagar) 
11 Dibrugarh 
12 U/s of Dibrugarh 

 
  
 

TABLE 3: PLAN FORM INDEX (PFI) ESTIMATION OF  
BRAHMAPUTRA RIVER FOR 1990 YEAR 

 
Reach Plan Form Index Threshold Indicator 

1 22.69 Low Braided 
2 15.39 Moderately Braided 
3 10.55 Moderately Braided 
4 55.97 Low Braided 
5 14.19 Moderately Braided 
6 28.34 Low Braided 
7 31.94 Low Braided 
8 19.12 Low Braided 
9 10.14 Moderately Braided 

10 13.61 Moderately Braided 
11 12.38 Moderately Braided 
12 20.95 Low Braided 
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TABLE 4: PLAN FORM INDEX (PFI) ESTIMATION OF  
BRAHMAPUTRA RIVER FOR 1997 YEAR 

 
Reach Plan Form Index Threshold Indicator 

1 8.94 Moderately Braided 
2 8.60 Moderately Braided 
3 7.71 Moderately Braided 
4 33.62 Low Braided 
5 13.55 Moderately Braided 
6 14.74 Moderately Braided 
7 17.21 Moderately Braided 
8 10.77 Moderately Braided 
9 10.69 Moderately Braided 

10 7.87 Moderately Braided 
11 6.81 Moderately Braided 
12 4.89 Moderately Braided 

 
 
 
 

TABLE 5: PLAN FORM INDEX (PFI) ESTIMATION OF  
BRAHMAPUTRA RIVER FOR 2008 YEAR 

 
Reach Plan Form Index Threshold 

Indicator 
1 15.66 Moderately Braided 
2 20.30 Low Braided 
3 9.99 Moderately Braided 
4 73.64 Low Braided 
5 8.08 Moderately Braided 
6 7.78 Moderately Braided 
7 18.50 Moderately Braided 
8 6.89 Moderately Braided 
9 6.34 Moderately Braided 
10 6.54 Moderately Braided 
11 5.41 Moderately Braided 
12 2.61 Heavily Braided 
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TABLE 6: COMPARISON OF PLAN FORM INDEX (PFI) FOR THE  
YEAR 1990, 1997 AND 2008 FOR THE RIVER BRAHMAPUTRA  

 
Reach 

No. 
PFI(1990) PFI(1997) PFI(2008) Remarks 

Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum 
1 22.69 9.90 45.16 8.94 13.22 4.37 15.66 5.74 38.65 Highly 

Braided:  
PFI < 4 
  
 
Moderately 
Braided:   
19 > PFI > 4 
 
 
Low Braided: 
PFI > 19 

2 15.39 5.23 48.67 8.60 3.50 21.09 20.30 4.42 98.05 
3 10.55 3.50 31.15 7.71 2.83 16.22 9.99 3.75 24.79 
4 55.97 8.46 113.89 33.62 8.94 124.48 73.64 16.47 136.85 
5 14.19 6.18 20.92 13.55 4.52 38.39 8.08 4.88 19.67 
6 28.34 9.98 108.61 14.74 7.73 30.46 7.78 3.40 31.30 
7 31.94 18.23 82.47 17.21 7.48 37.27 18.50 4.37 100.00 
8 19.12 3.28 83.19 10.77 4.39 32.43 6.89 3.84 14.95 
9 10.14 5.25 22.71 10.69 3.64 48.37 6.34 2.00 17.55 

10 13.61 6.09 34.31 7.87 5.25 10.65 6.54 3.77 12.57 
11 12.38 7.65 27.93 6.81 3.36 12.23 5.41 3.52 10.91 
12 20.95 4.27 87.05 4.89 2.76 7.57 2.61 1.63 3.70 

 
Note: There is considerable increase in braiding intensity during the period 1990-2008 as can be seen from Table -5 
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Fig. 4: Change in the Reach wise MEAN Plan Form Index (PFI) Values in 
different reaches of the Brahmaputra River in 1990, 1997 and 2008 year 

 

 
Fig. 5: Change in the Reach wise MINIMUM  Plan Form Index (PFI) Values 
in different reaches of the Brahmaputra River in 1990, 1997 and 2008 year 
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Fig. 6: Change in the Reach wise MAXIMUM Plan Form Index (PFI) Values 
in different reaches of the Brahmaputra River in 1990, 1997 and 2008 year 

 

 
Fig. 7: Cross-section wise Plan Form Index (PFI) Values in different 

reaches of the Brahmaputra River in 1990, 1997 and 2008 year 
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Fig. 8: The Moderately Braided Channels (Reach 1 - Near Dhubri) in IRS 
1C LISS -  III image of 1997 year with Plan Form Index value 11.2 

 
 

 
 

Fig. 9: The Highly Braided Channels (Reach 1 - Near Dhubri) in IRS P6  
LISS -  III image of 2008 year with Plan Form Index value 3.7 
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Fig. 10: The Moderately Braided Channels (Reach 2 – Near Barpeta) in  
IRS 1C LISS -  III image of 1997 year with Plan Form Index value 4.1 

 

 
 

Fig. 11: The Highly Braided Channels (Reach 2 – Near Barpeta) in IRS P6 
LISS -  III image of 2008 year with Plan Form Index value 1.9 
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Fig. 12: The Moderately Braided Channels (Reach 3 - Palashbari Gumi) in 
IRS 1C LISS -  III image of 1997 year with Plan Form Index value 2.4 

 
 
 

 
 

Fig. 13: The Highly Braided Channels (Reach 3 - Palashbari Gumi) in IRS 
P6 LISS -  III image of 2008 year with Plan Form Index value 1.6 
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Fig. 14: The Highly Braided Channels (Reach 5 – Near Mangaldai) in IRS 
1C LISS -  III image of 1997 year with Plan Form Index value 2.1 

 
 
 
 
 

 
 

Fig. 15: The Highly Braided Channels (Reach 5 – Near Mangaldai) in IRS 
P6 LISS -  III image of 2008 year with Plan Form Index value 2.7 
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Fig. 16: The Moderately Braided Channels (Reach 7 – Upstream Silghat) 
in IRS 1C LISS -  III image of 1997 year with Plan Form Index value 5.5 

 
 
 
 
 
 

 
 

Fig. 17: The Highly Braided Channels (Reach 7 – Upstream Silghat) in  
IRS P6 LISS -  III image of 2008 year with Plan Form Index value 3.7 
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Fig. 18: The Moderately Braided Channels (Reach 10 – Upstream Sibsagar) 
in IRS 1C LISS -  III image of 1997 year with Plan Form Index value 5.2 

 
 

 

 
 

Fig. 19: The Highly Braided Channels (Reach 10) in IRS P6 LISS -  III 
image of 2008 year with Plan Form Index value 3.8 

 



 25 

RIVER BANK EROSION / MIGRATION 
 

The bank lines of the river were demarcated from the Satellite Imageries of 
1990, 1997 and 2008 year using ERDAS and ArcMap Software Tools. Mosaic 
images of year 1990, 1997 and 2007-08 with digitized bank lines and reference 
cross-sections are presented in Fig. 20, 21 and 22 respectively.  

The satellite image based estimation of area eroded in Brahmaputra during 
periods 1990 to 2007-08 and 1997 to 2007-08 is presented in tabular form (Table 7), 
which shows the eroding tendency along the river banks of Brahmaputra in the entire 
study area. For the period of 17 years, the total land loss per year excluding forest 
area is found out to be 62km2/year. For more recent period of 1997 to 2007-08 the 
total land loss per year (excluding avulsion) is found out to be 72.5km2/year which is 
registering sharp increase in land lost due to river erosion in recent years. This calls 
for a robust and efficient river management action plan to arrest huge valuable land 
losses to erosion. 

 
TABLE 7 SATELLITE BASED ESTIMATION AND COMPARISON OF AREA 

ERODED IN BRAHMAPUTRA DURING THE PERIOD  
1990 TO 2007-08 AND 1997 TO 2007-08 

Reach 
Number 

North Bank South Bank 

Minimum 
PFI 

Values  

Total 
Erosion 
Length 
(Km) 

1990 to 
2007-
08   (in  
Sq.Km) 

1997 
to 

2007-
08   (in 

Sq. 
Km) 

Total 
Erosion 
Length 
(Km) 

1990 
to 

2007-
08 

(Sq. 
Km) 

1997 
to 

2007-
08   (in 

Sq. 
Km) 

19
97

 

20
07

-0
8 

1(Dhubri) 40.19 124.461 94.129 7.05 194.983 10.791 13.22 5.74 
2(Goalpara) 39.5 79.046 40.902 4.85 17.816 5.052 3.50 4.42 
3(Palasbari) 54.87 48.668 42.914 14.02 23.006 15.859 2.83 3.75 
4(Guwahati) 21.02 7.92 1.654 24.38 5.385 12.079 8.94 16.4 
5(Morigaon-
Mangaldai ) 6 35.606 2.138 47.91 96.979 103.7 4.52 4.88 
6(Morigaon-
Dhing) 24.86 29.057 7.275 47.8 10.795 56.72 7.73 3.40 
7(Tezpur) 8.58 38.758 4.733 52.95 16.628 44.774 7.48 4.37 
8( Tezpur-
Gohpur) 8.85 31.187 5.794 44.16 26.098 71.227 4.39 3.84 
9(Majuli-
Bessamora) 24.69 25.562 12.327 47.17 32.788 28.998 3.64 2.00 
10( Majuli-
Sibsagar) 16.93 60.657 16.878 54.95 44.018 42.118 5.25 3.77 
11(Dibrugarh) 37.86 37.506 43.529 43.89 46.595 6.066 3.36 3.52 
12(U/s 
Dibrugarh) 

70.5 20.376 55.454 57.54 399.529 333.416 Forest Area 
Excluded 
southern 

side   
TOTAL  353.85 538.805 327.726 389.13 914.62 730.8   
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Moreover, vulnerability of the stream bank erosion is significant as evident 

from Table 7. Almost 750 km of bank line in both side of the river has potential 
erosion tendency. The table also shows that downstream of Guwahati (Reach 
Number 4), erosion tendency is considerably high in north bank line whereas in the 
upstream of Guwahati erosion tendency is considerably high in south bank-line, 
indicating that river geological control point at Guwahati in respect to other control 
points has significant causative impact on the morphological behavior of River 
Brahmaputra as a whole in Assam flood plains. It urgently warrants attention for 
undertaking the integrated river management planning of Brahmaputra on holistic 
approach. 
 
 
 

 
 
 

Fig. 20: Brahmaputra River Cross-Sections Year 1990  
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Fig. 21: Mosaic of IRS 1C LISS – III Satellite Image of  

Brahmaputra River Year 1997  
 

 
Fig. 22: Mosaic of IRS P6 LISS – III Satellite Image of  

Brahmaputra River Cross-Sections Year 2007-08  
 

P6 
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Fig. 23: Cross-sections in River Brahmaputra in 1990 
 

Fig. 24: Comparison in River Brahmaputra Years1990 &1997 
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Fig. 25: Comparison in River Brahmaputra in 1997 & 2007-08 
and Cross-Section. River is divided into 12 reaches 

Fig. 26: The River channel demarcated from the  
        IRS P6 LISS III image of 2008 year 
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 Fig. 27: Comparison in River Brahmaputra in 1990 & 2008 and Cross-
Section. River is divided into 12 reaches 

Fig. 28: Bank Line  of Year 2007-08 compared with  
year 1990 in reaches 5-11 
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Fig. 29: The River channel in Reach 1 demarcated from the  
IRS P6 LISS III image of 2008 year 

 
 
 

 
 

Fig. 30: The River channel in Reach 2 demarcated from the  
IRS P6 LISS III image of 2008 year. 
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Fig. 31: Shift of Left and Right Bank between 1990 and 2008 year in Reach 1 

 
Fig. 32: Shift of Left and Right Bank between 1990 and 2008 year in Reach 2 

 
Fig. 33: Shift of Left and Right Bank between 1990 and 2008 year in Reach 3 
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Fig. 34: Shift of Left and Right Bank between 1990 and 2008 year in Reach 4 

 
Fig. 35: Shift of Left and Right Bank between 1990 and 2008 year in Reach 5 

 
Fig. 36: Shift of Left and Right Bank between 1990 and 2008 year in Reach 6 
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Fig. 37: Shift of Left and Right Bank between 1990 and 2008 year in Reach 7 

 
Fig. 38: Shift of Left and Right Bank between 1990 and 2008 year in Reach 8 

 
Fig. 39: Shift of Left and Right Bank between 1990 and 2008 year in Reach 9 

 

1990-2008

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10

Cross section in Reach-7

B
an

k 
sh

ift
 a

cc
ro

ss
 th

e 
riv

er
(K

m
)

South Bank
North Bank

1990-2008

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10

Cross section in Reach-8

B
an

k 
sh

ift
 a

cc
ro

ss
 th

e 
riv

er
(K

m
)

South Bank
North Bank

1990-2008

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10

Cross section in Reach-9

B
an

k 
sh

ift
 a

cc
ro

ss
 th

e 
R

iv
er

(K
m

)

South Bank
North Bank



 35 

 
Fig. 40: Shift of Left and Right Bank between 1990 and 2008 year in Reach 10 

 
Fig. 41: Shift of Left and Right Bank between 1990 and 2008 year in Reach 11 

 
Fig. 42: Shift of Left and Right Bank between 1990 and 2008 year in Reach 12 
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Fig. 43:  Comparison in River Brahmaputra in (Reach- 1) 
(Year 1990 &2008) 

Fig. 44:  Comparison of Bank Line Reach -2 near Goalpara for 
the Year 1990 & 2007-08  
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 Fig. 45:  Reach 5-6 Near Morigaon comparing the bank shift from 
1990 to 2007-08 showing heavy braiding in 2007 (Dhing) 

 

Fig. 46:  Bank Line of year 1990 with year 2007-08 
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Fig. 47:  Bank Line of Year 1990 with Year 2007-08 in Upstream Reaches   

Fig. 48:  Area eroded in Main Brahmaputra during the period 1990- 2007-08  
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Fig. 49:  Area eroded in Main Brahmaputra during the period 1997- 2007-08  

Fig. 50:  Area eroded in Main Brahmaputra near Dhubri & Goalpara  
during the period 1990- 2007-08 
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Fig. 51:  Land Loss in Brahmaputra River Year 1990- 2007-08 

Fig. 52:  Area eroded in Main Brahmaputra near Guwahati   
during the period 1990- 2007-08 
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Fig. 53:  Comparison of Braiding Channel (1997) with Bankline 
of 1990 near Morigaon 

Fig. 54:  Area eroded in Main Brahmaputra near Tezpur    
during the period 1990- 2007-08 
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Fig. 55:  Area eroded in Main Brahmaputra near Majuli  
                         during the period 1990- 2007-08 

Fig. 56:  Area eroded in Main Brahmaputra near Dibrugarh  
during the period 1990- 2007-08 
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TABLE 8: PRIORITIZATION WITH RESPECT TO LAND AREA LOST 
 
 

PRIORITIZATION WITH RESPECT TO LAND AREA LOST  
Satellite based estimation of area eroded in Brahmaputra River for the period 1997 to 2007-08 

 

Reach No. 

South Bank 

Reach No. 

North Bank 

Remarks 

Total 
Erosion 
Length 

Km  

Area 
Eroded  

Km² 

Total 
Erosion 
Length 

Km  

Area 
Eroded  

Km² 
5(Morigaon) 47.91 103.700 1(Dhubri) 40.19 94.129 

  

8(U/s Tezpur) 44.16 71.227 11(Dibrugarh) 37.86 43.529 
6(Morigaon) 47.8 56.720 3(Palasbari) 54.87 42.914 
7(Tezpur) 52.95 44.774 2(Goalpara) 39.5 40.902 
10(U/s Majuli) 54.95 42.118 10(U/s Majuli) 16.93 16.878 
9(Majuli) 47.17 28.998 9(Majuli) 24.69 12.327 
3(Palasbari) 14.02 15.859 6(Morigaon) 24.86 7.275 
4(Guwahati) 24.38 12.079 8(U/s Tezpur) 8.85 5.794 
1(Dhubri) 7.05 10.791 7(Tezpur) 8.58 4.733 
11(Dibrugarh) 43.89 6.066 5(Morigaon) 6 2.138 
2(Goalpara) 4.85 5.052 4(Guwahati) 21.02 1.654 
12(U/s Dibrugarh) 57.54 333.416 12(U/s Dibrugarh) 70.5 55.454 Forest Area 

excluded   in 
Northern side 
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TABLE 9: PRIORITIZATION WITH RESPECT TO MAXIMUM BANK SHIFT  
OF THE LEFT BANK OF BRAHMAPUTRA  

 

S.No. 

  South Bank 

Reach No. Erosion Length   
(Km)  

Maximum 
erosion in 
tranverse 

Direction (Km) 
1 5(Morigaon) 47.909 4.125 
2 11(Dibrugarh) 28.297 3.716 
3 10 (U/s Majuli) 54.95 3.432 
4 8(U/s Tezpur) 16.402 2.935 
5 8(U/s Tezpur) 9.384 2.709 
6 9(Majuli) 9.012 2.653 
7 8(U/s Tezpur) 18.372 2.567 
8 2(Goalpara) 2.71 2.412 
9 7(Tezpur) 30.715 2.237 

10 1(Dhubri) 5.423 2.159 
11 6(Morigaon) 12.049 1.775 
12 9(Majuli) 18.805 1.624 
13 6(Morigaon) 4.062 1.601 
14 7(Tezpur) 13.073 1.528 
15 7(Tezpur) 9.164 1.486 
16 11(Dibrugarh) 15.588 1.464 
17 6(Morigaon) 31.686 1.392 
18 9(Majuli) 3.698 1.226 
19 9(Majuli) 5.053 1.216 
20 3(Palasbari) 3.518 1.207 
21 9(Majuli) 3.996 1.056 
22 4(Guwahati) 6.702 0.953 
23 4(Guwahati) 17.68 0.847 
24 3(Palasbari) 4.89 0.766 
25 3(Palasbari) 3.975 0.741 
26 9(Majuli) 2.209 0.735 
27 9(Majuli) 4.399 0.634 
28 1(Dhubri) 1.624 0.553 
29 3(Palasbari) 1.634 0.307 
30 2(Goalpara) 2.139 0.204 
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TABLE 10: PRIORITIZATION WITH RESPECT TO MAXIMUM BANK SHIFT  
OF THE RIGHT BANK OF BRAHMAPUTRA 

S. No. 

  North bank 

Reach No. Erosion Length 
(Km)  

Maximum Erosion 
in Tranverse 

Direction (Km) 
1 1(Dhubri) 33.052 4.251 
2 3(Palasbari) 30.605 3.64 
3 3(Palasbari) 6.009 3.445 
4 2(Goalpara) 35.572 3.354 
5 11((Dibrugarh) 20.685 2.655 
6 1(Dhubri) 7.141 2.317 
7 9((Majuli) 9.135 2.27 
8 7(Tezpur) 4.218 1.908 
9 8(U/s Tezpur) 1.173 1.677 
10 6(Morigaon) 7.982 1.665 
11 5(Morigaon) 0.897 1.595 
12 10 (U/s Majuli) 5.27 1.501 
13 4(Guwahati) 15.439 1.489 
14 9(Majuli) 10.949 1.447 
15 11(Dibrugarh) 15.636 1.438 
16 7(Tezpur) 4.362 1.415 
17 10(U/s of Majuli) 9.863 1.393 
18 6(Morigaon) 5.05 1.367 
19 6(Morigaon) 3.243 1.306 
20 8(U/s Tezpur) 1.29 1.237 
21 5(Morigaon) 1.669 1.215 
22 8(U/s Tezpur) 2.794 1.033 
23 9(Majuli) 2.32 0.98 
24 3(Palasbari) 3.042 0.935 
25 4(Guwahati) 3.101 0.876 
26 2(Goalpara) 1.871 0.872 
27 5(Morigaon) 3.433 0.746 
28 3(Palasbari) 15.217 0.742 
29 10(U/s Majuli) 1.801 0.657 
30 9(Majuli) 2.287 0.526 
31 4(Guwahati) 1.533 0.517 
32 4(Guwahati) 0.945 0.484 
33 2(Goalpara) 2.055 0.388 
34 11(Dibrugarh) 1.538 0.376 
35 8(U/s Tezpur) 1.511 0.36 
36 8(U/s Tezpur) 2.086 0.331 
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Chapter – I (B)   
 

MAJOR TRIBUTARIES OF BRAHMAPUTRA RIVER SYSTEM   
 

There are 13 major north bank tributaries and 10 major south bank 
tributaries of the Brahmaputra river considered for the present study. The area 
eroded in a period of 11 years (1997-2008) is given in Table 11 and 12 for 
north bank and south bank tributaries respectively. The area eroded in a 
period of 18 years (1990-2008) is given in Table 13 and 14 for north bank and 
south bank tributaries respectively.   

 
 
 
 

 
TABLE 11 : SATELLITE BASED ASSESSMENT OF AREA ERODED IN NORTHERN 

TRIBUTARIES OF BRAHMAPUTRA RIVER FOR THE PERIOD 1997-2008 

Sl. 
No. 

Tributary 
Name 

(NorthBank) 
Tributary 

Length in Km. 

Eroded 
Area in 
Right 
Bank 

Eroded Area 
in  Left Bank 

Total Eroded 
Area in Sq.Km. 

1 Aiel 131.677 2.501 26.256 28.757 
2 Borgang 31.502 7.836 7.882 15.718 
3 Bornadi 60.670 0.770 17.554 18.324 
4 Borolia 102.048 5.472 61.022 66.494 
5 Champamati 101.985 6.335 39.604 45.938 
6 Dhansiri North 89.193 0.848 22.443 23.292 
7 Gabharu 57.501 3.951 11.724 15.675 
8 Jia Bharali 36.206 0.706 7.500 8.206 
9 Jiadhol 23.095 18.996 8.856 27.852 

10 Manas 48.927 0.403 13.704 14.107 
11 Pagladiya 70.233 0.732 17.406 18.137 
12 Pahumara 91.432 3.396 20.052 23.448 
13 Subansiri 122.906 25.301 24.562 49.863 
  TOTAL 967.375 77.247 278.565 355.812 
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TABLE 12 :  SATELLITE BASED ASSESSMENT OF AREA ERODED IN SOUTHERN 
TRIBUTARIES OF BRAHMAPUTRA RIVER FOR THE PERIOD 1997-2008 

Sl. 
No. 

Tributary 
Name (South 

Bank) 
Tributary 

Length in Km. 

Eroded 
Area in 
Right 
Bank 

Eroded Area 
in  Left Bank 

Total Eroded 
Area in Sq.Km. 

1 Buri Dihing 120.406 15.386 13.329 28.716 
2 Dhansiri South 163.025 29.240 5.291 34.531 
3 Dikhow 93.292 14.104 6.726 20.830 
4 Disang 197.585 10.113 10.979 21.092 
5 Dudhnoi 34.354 8.362 0.091 8.453 
6 Jhanji 56.428 7.740 2.806 10.546 
7 Jinari 28.790 5.581 0.409 5.991 
8 Kolong /Kapili 192.511 21.840 10.346 32.186 
9 Krishnai 106.792 12.523 0.610 13.133 

10 Kulsi 80.140 8.332 3.308 11.640 
  TOTAL 1073.323 133.221 53.897 187.118 

      

 

Total Eroded Area in  Major 
Tributaries during 1997 to 2008 = 
355.812+187.118 = 542.930 
Sq.Km 
 

542.930 km² 

 
 Eroded Area per year 54.293 Km²/year  
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TABLE 13 : SATELLITE BASED ESTIMATION OF AREA ERODED IN NORTHERN TRIBUTARIES 
OF BRAHMAPUTRA RIVER FOR THE PERIOD 1990-2008 

Sl. 
No. 

Tributary Name 
(North Bank) 

Tributary 
Length in 

Km. 
Eroded Area in 

Right Bank 
Eroded Area 
in  Left Bank 

Total Eroded 
Area in Sq.Km. 

1 Aiel 131.677 8.549 27.118 35.667 
2 Borgang 31.502 9.462 8.300 17.762 
3 Bornadi 60.670 2.250 18.814 21.064 
4 Borolia 102.048 7.089 66.410 73.499 
5 Champamati 101.985 9.194 42.852 52.046 
6 Dhansiri North 89.193 1.500 30.509 32.009 
7 Gabharu 57.501 7.405 13.671 21.076 
8 Jia Bhareli 36.206 1.974 8.956 10.930 
9 Jiadhol 23.095 19.554 10.297 29.851 

10 Manas 48.927 1.476 15.496 16.972 
11 Pagladiya 70.233 1.839 19.717 21.556 
12 Pahumara 91.432 4.792 23.204 27.996 
13 Subansiri 122.906 29.925 26.144 56.069 
  TOTAL 967.375 105.009 311.488 416.497 

 
 

TABLE 14 : SATELLITE BASED ESTIMATION OF AREA ERODED IN SOUTHERN TRIBUTARIES 
OF BRAHMAPUTRA RIVER FOR THE PERIOD 1990-2008 

Sl. 
No. 

Tributary Name 
(South Bank) 

Tributary 
Length in Km. 

Eroded Area 
in Right 

Bank 
Eroded Area 
in  Left Bank 

Total Eroded 
Area in Sq.Km. 

1 Buri Dihing 120.406 17.711 15.008 32.719 
2 Dhansiri South 163.025 31.557 7.899 39.456 
3 Dikhow 93.292 15.734 9.201 24.935 
4 Disang 197.585 11.581 12.306 23.887 
5 Dudhnoi 34.354 9.492 1.306 10.798 
6 Jhanji 56.428 9.667 4.085 13.752 
7 Jinari 28.790 6.091 1.539 7.630 
8 Kolong Kapili 192.511 23.943 12.884 36.827 
9 Krishnai 106.792 15.579 1.314 16.893 

10 Kulsi 80.140 11.397 4.390 15.787 
  TOTAL 1073.323 152.752 69.932 222.684 

      
      
      

 

Total Eroded Area in  Major 
Tributaries during 1990- 2008 = 
416.497+222.684 = 639.181 Sq.Km 

639.181 

km²  
 Eroded Area per year 37.60 Km²/year  
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Fig. 57:  Brahmaputra River and its major tributaries of the Year 1990  
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Fig. 58:  Brahmaputra River and its major tributaries of the Year 1990  

Fig. 59:  Mosaic of IRS P6 LISS – III Satellite Images of Brahmaputra 
River and its major tributaries of the Year 2007-08  

P6 
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Fig. 60:  Brahmaputra River and its major tributaries of the Year 2007-08  

Fig. 61:  Brahmaputra River and its North Bank Tributaries Year 2007-08  
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Fig. 62:  Brahmaputra River and its North Bank Tributaries Year 2007-08  

Fig. 63:  Brahmaputra River and its North Bank Tributaries Year 2007-08  
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Fig. 64:  Brahmaputra River and its South Bank Tributaries Year 2007-08  

Fig. 65:  Brahmaputra River and its South Bank Tributaries Year 2007-08  
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Fig. 66:  Brahmaputra River and its South Bank Tributaries Year 2007-08  

Fig. 67:  Comparison of Brahmaputra River and its South Bank 
Tributaries Year 1990-2007-08  
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Fig. 68:  Comparison of Brahmaputra River and its South Bank 
Tributaries Year 1990-2007-08  

Fig. 69:  Comparison of Brahmaputra River and its South Bank 
Tributaries Year 1990-2007-08  
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Fig. 70:  Comparison of Brahmaputra River and its North Bank 
Tributaries Year 1990-2007-08  

Fig. 71:  Comparison of Brahmaputra River and its North Bank 
Tributaries Year 1990-2007-08  
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Fig. 72:  Comparison of Brahmaputra River and its North Bank 
Tributaries Year 1990-2007-08  

Fig. 73:  Comparison of Brahmaputra River and its North Bank 
Tributaries Year 1990-2007-08  
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Fig. 74:  Comparison of Brahmaputra River and its South Bank 
Tributaries Year 1990-2007-08  
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CHAPTER – II 
 

SATELLITE DATA BASED ANALYSIS FOR MORIGAON SITE ON 
BRAHMAPUTRA RIVER 
 
As decided in the monitoring committee meeting held in the office of Chief 
Secretary Assam on 17th November 2008, in depth satellite based analysis of 
the fluvial land-form changes of the Brahmaputra near Morigaon have been 
conducted and a scheme for pilot study for erosion control has been evolved 
for this site.  
 
For the above purpose, satellite imageries of IRS 1C/1D  for Panchromatic 
sensor have been processed with the help of ERDAS and Arc-Gis software. 
The interpretation of these imageries and maps has yielded the quantitative 
measure of various aspects related to bank erosion. The processed version of 
these imageries and maps have been placed below. 
 
 

 Fig. 75:  Channel Braiding of Brahmaputra River near Morigaon (1997)  
over IRS1C/1D PAN Image  
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Fig. 76  Channel Braiding of Brahmaputra River near Morigaon (2007)  
over IRS1C/1D PAN Image  

 

Fig. 77  Comparison of Bankline Shift Near Morigaon (1990-2007)  
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Fig. 78  Comparison of Braiding of Brahmaputra Near Morigaon 2007  
laid over Braiding of 1997  

 

Fig. 79  Comparison of Braiding of Brahmaputra Near Morigaon in Year 1997 
laid over Braiding of  Year 2007 
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River in 1990  

Dhing 

Lahorighat 

Reach-5 

Reach-6 

 
River in 1990 

 

Reach-5 

Reach-6 

 Fig. 80  Superimposed braided channel layer of  year 1997 IRS-1D-
Pan                  data at Morigaon site over LISS I image of 1990 ( Reach5-6) 

 

Fig. 81  Superimposed vector layer of PAN Data of  Year 1997 near Morigaon site 
over  vector layer of Image Data of  the year 1990 at Reach 5-6 
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Dhing 

Fig. 82 Comparison of Bank Line Shift near Morigaon site (1990-2007) 

 Fig. 83  Comparison of Braiding of Brahmaputra near Morigaon in 1997 
with layed over braiding of 2007 
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Dhing 

Fig. 84  Comparison of Braiding of Brahmaputra near Morigaon in 2007 with 
layed over braiding of 1997 
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TABLE 15: PFI CALCULATION & CHANNEL SHIFT AT MORIGAON SITE AT IDENTIFIED BANK 
POSITIONS  IN YEAR 1997 & 2007 

Refer
-ence 
Cross 

Section 

Location North Bank 
[May,2007] 
(Lat.- long) 

Location South Bank            
[May,2007] 
(Lat.- long) 

PFI=  
(T/BN)x 

100 

PFI=  
(T/BN) 

x100 
Braiding Intensity 

of Braiding 

Channel Bank 
line shifting 
{Erosion}(m) 

C/S Lat.(N) Long.(E) Lat.(N) Long.(E) 1997 2007     
South 
Bank 

North 
Bank 

CS1 26°32’51.66” 92°20’46.95” 26°28’38.39” 92°23’04.33” 9.25 6.02 Increased 
Moderately 
Braided (+) 208. 

(+)1805
. 

CS2 26°33’12.59” 92°21’20.69” 26°29’9.7” 92°24’35” 7.00 4.31 Increased 
Moderately 
Braided (+) 44. 

(+)1997
. 

CS3 26°33’19.06” 92°22’10.58” 26°29’32.33” 92°25’06.47” 9.28 7.14 Increased 
Moderately 
Braided (+)706. 

(+)1251
. 

CS4 26°33’24.24” 92°22’51.47” 26°29’48.47” 92°25’39.66” 8.22 7.65 Increased 
Moderately 
Braided (+)770. (+)817. 

CS5 26°32’21.29” 92°23’32.4” 26°29’41.42” 92°26’32.37” 9.04 5.75 
Increased 
severly 

Moderately 
Braided (+)681. (+)0.00 

CS6 26°33’05.38” 92°24’27.95” 26°29’45.33” 92°27’13.24” 6.45 12.20 
Decreased 
severly 

Moderately 
Braided (+)773.7 (-)1001. 

CS7 26°33’11.10” 92°25’15.77” 26°30’12.32” 92°27’44.06” 10.43 7.53 Increased 
Moderately 
Braided (+)217. (-)785. 

CS8 26°33’33” 92°25’26” 26°30’24.42” 92°28’06.43” 8.13 7.87 Increased 
Moderately 
Braided (+)164. 0.00 

CS9 26°34’06.77” 92°25’28.67” 26°30’36.84” 92°28’25.78” 6.02 7.53 Increased 
Moderately 
Braided (-)403. 

(+)1188
. 

CS10 26°34’13.67” 92°25’34.87” 26°30’41.25” 92°28’33.38” 6.79 9.04 Decreased 
Moderately 
Braided (-)645. 

(+)1351
. 

 



 68 

TABLE 16: SOUTH BANK SHIFT OF YEAR 2007 FROM 1997 FOR LOCATED  
BANK POSITIONS NEAR MORIGAON 

 
 

 
Location Point of South 

Bank (2007) 
Reach 

Segment 
Reach 

Length 
PFI 

(1997) Intensity of Braiding 

South Bank 
line shifting 

(Erosion) 
from Year 

1997 to 2007 
(meter) 

Reference 
Cross 

section 
Lat.(N) Long.(E) 

CS0 26°27’52.44” 92°23’4.33” 0.00 0.00 11.50 Moderately braided 0 

CS-1 26°27’29” 92°22’6.26” 2395.07 2395.07 11.67 Moderately braided 311.53 

CS-2 26°27’25.21” 92°21’41.34” 691.25 3086.31 7.70 Moderately braided 664.3 

CS-3 26°27’13.24” 92°21’20.61” 702.27 3788.58 8.93 Moderately braided 1000.89 

CS-4 26°26’53.67” 92°2057.86” 837.74 4626.32 14.43 Moderately braided 3313.43 

CS-5 26°26’33” 92°20’33” 949.94 5576.26 26.67 Low Braiding  3988.99 

CS-6 26°26’24.20” 92°20’17.17” 549.93 6126.19 44.12 Low Braiding  3977.71 

CS-7 26°26’17.81” 92°19’45.33” 835.51 6961.69 35.14 Low Braiding  3629.91 

CS-8 26°26’22” 92°19’9.26” 748.48 7710.18 39.72 Low Braiding  2989.17 
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Fig. 85 Plan Form Index Comparison  of year 1997 and 2007   

for Morigaon Site  
 
 

   
Fig. 86 Bank Line Shift Comparison of Left and Right Bank   

for 1997 -2007 for Morigaon Site  
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From the above analysis, the following major findings have emerged  
 

i) Braiding intensity has registered a significant rise during the 
course of 1997 – 2007 as evident from the Table No.10 due to 
unabated stream bank erosion.  

ii) The maximum length of bank retreat due to erosion in the south 
bank approximately 4 Km.  

iii) The maximum length of bank retreat due to erosion in the North 
bank approximately 1.99 Km.  
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 Chapter – III 
 

FINDING OF PHASE – I STUDY  
 

Table 17:  SUMMARY OF LAND LOSS DUE TO EROSION IN MAIN STEM 
AND MAJOR TRIBUTARIES OF BRAHMAPUTRA RIVER SYSTEM  

 

 
From the preceding analyses, the following findings have emerged.  

[A] Brahmaputra Main Stem:-   

i) Braiding intensity has registered a sharp rise during the course of 
1990 – 2008 as evident from the Table No.5 due to unabated 
stream bank erosion.  

ii) The total land area lost during 1990 – 2008 in main stem 
Brahmaputra is assessed through GIS data base of satellite 
derive maps to be 1054 Sq. Km (without considering the isolation 
of forest area of Dibru-Saikhowa reserved forest due to avulsion). 

iii) The total land area lost during 1997 – 2008 in main stem 
Brahmaputra is assessed through GIS data base of satellite 
derive maps to be 725 Sq. Km (without considering the isolation 
of forest area of Dibru-Saikhowa reserved forest due to avulsion). 

iv) The total land area lost during 1990 – 2008 is assessed to be 515 
Sq. Km in the south bank. 

v) The total land area lost during 1990 – 2008 is assessed to be 539 
Sq. Km in the north bank. 

S. 
No. Item 

Period of Study  

Remarks 
1997 to 2007-08  1990 to 2007-08 

Annual 
land loss 

Sq.km/ 
year 

Total 
Land 
Lost 

Sq.km 

Annual 
land loss 

Sq.km/ 
year 

Total 
Land 
Lost 

Sq.km 
1 Main stem 73 725 62 1054 During the shorter period 

of 1997-2008 
Brahmaputra river system 
has exhibited 
considerable  increase in 
annual land lost in 
comparison to prolong 
period of 1990 to 2007-08 

2. Major 
Tributaries  

54 543 38 639 

 Total 127 1268 100 1693 
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vi) The total land area lost during 1997 – 2008 is assessed to be 397 
Sq. Km in the south bank. 

vii) The total land area lost during 1997 – 2008 is assessed to be 328 
Sq. Km in the north bank 

viii) Thus, during 1990-2007-08 approximately 1054 Sq. Km. of land 
area has been lost, giving an annual area loss of 62 Sq.Km/Year.  

ix) During the period of 1997 to 2007-08 the annual rate of erosion 
has considerably increase to 73 sq.km /year in comparison to 62 
sq Km/year for the prolong period  of 1990 to 2007-08. 

x) During the recent period of 1997-2007-08, South Bank of Main 
Brahmaputra stem has exhibited considerably higher erosion in 
comparison to north Bank in contrast to the prolonged period of 
1990-2007-08.   

xi) The maximum length of bank retreat due to erosion in the south 
bank approximately 4.125 Km at near Morigaon.  

xii) The maximum length of bank retreat due to erosion in the North 
bank approximately 4.251 Km at near Dhubri.  

xiii) The total length of erosion-affected bank line approximately 743 
Km out of which south bank 389 Km and 354 Km in North bank.  

[B] Major Tributaries of Brahmaputra River System:-   

i) The total land area lost during 1990 – 2008 in major tributaries of 
Brahmaputra river system is worked out through GIS data base of 
satellite derive maps to be 639 Sq. Km . 

ii) The total land area lost during 1997 – 2008 in major tributaries of 
Brahmaputra river system is assessed through GIS data base of 
satellite derive maps to be 543 Sq. Km. 

iii) The total land area lost during 1990 – 2008 is assessed to be 223 
Sq. Km in the southern tributaries. 

iv) The total land area lost during 1990 – 2008 is assessed to be 416 
Sq. Km in the northern tributaries. 

v) The total land area lost during 1997 – 2008 is assessed to be 187 
Sq. Km in the southern tributaries. 

vi) The total land area lost during 1997 – 2008 is assessed to be 356 
Sq. Km in the northern tributaries. 
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vii) Thus, during 1990-2007-08 approximately 639 Sq. Km. of land 
area has been lost, giving an annual area loss of 38 Sq.Km/Year 
for major tributaries.  

viii) During the period of 1997 to 2007-08 the annual rate of erosion 
has considerably increase to 54 sq.km /year in comparison to 38 
sq Km/year for the prolong period  of 1990 to 2007-08 for major 
tributaries. 

ix) During the study periods Northern tributaries of Brahmaputra 
River   have exhibited higher erosion in comparison to Southern 
tributaries.   
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       Introduction 
 

1.1 GENERAL 

 

Management of Water resources requires input from hydrological studies. This is 

mainly in the form of estimation or forecasting of the magnitude of a hydrological variable 

like rainfall, runoff and sediment concentrations using past experience. Such forecasts are 

useful in many ways. They provide a warning of the extreme flood or drought conditions in 

case of rainfall-runoff modeling and assessment of volume of sediments being transported by 

a river in case of runoff-sediment modeling. This helps to optimize the design and 

maintenance of systems like reservoirs and power plants. The contract negotiation and 

hydropower sales also call for forecasted values of river flows and sediment loads. 

 

1.2 RAINFALL-RUNOFF PROCESS 

 

The rainfall - runoff process is believed to be highly nonlinear, time-varying, spatially 

distributed, and not easily described by simple models. In addition to rainfall, runoff is 

dependent on numerous factors such as initial soil moisture, land use, watershed 

geomorphology, evaporation, infiltration, distribution, duration of the rainfall, and so on. 

Although many watersheds have been gauged to provide continuous records of stream flow, 

engineers are often faced with situations where little or no information is available. A number 

of models have been developed to simulate this process. Depending on the complexities 

involved, these models are categorized as empirical, black-box, conceptual or physically-

based distribution models. In operational hydrology, the system-theoretic black-box and 

conceptual models are usually employed for rainfall-runoff modeling because the physically-

based distributed models are too complex, data intensive and cumbersome to use.  

 

Conceptual rainfall-runoff (CRR) models are designed to approximate with in their 

structures (in some physically realistic manner) the general internal sub processes and 

physical mechanics, which govern the hydrologic cycle. CRR models usually incorporate 

simplified forms of physical laws and are generally nonlinear, time-invariant, and 

deterministic, with parameters that are representative of watershed characteristic. Until 

recently, for practical reasons (data availability, calibration problems, etc.) most conceptual 

1 
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watershed models assumed lumped representations of the parameters. Among the more 

widely used and reported lumped parameter watershed models are the Sacramento soil 

moisture accounting (SAC-SMA) model of the U.S. National Weather Service (Burnash et al. 

1973. Brazil and Hudlow, 1980) HEC-1 (U.S. Army corps of engineers, 1990) and the 

Stanford watershed model (SWM) Crawford and Linsley, 1966). While such models ignore 

the rainfall runoff process, they attempt to incorporate realistic representations of the major 

nonlinearities inherent in the R-R relationships.  Conceptual watershed models are generally 

reported to be reliable in forecasting the most important features of the hydrograph, such as 

the beginning of the rising limb, the time and the height of the peak and volume of flow 

(Kitanidis and Bras, 1980 a;b;Sorooshian, 1983), However, the implementation and 

calibration of such a model can typically present various difficulties (Duan et al.. 1992) 

requiring sophisticated mathematical tools (Duan et al.. 1992.1993.1994; Sorooshain et al.., 

1993) significant amounts of calibration data (Yapo et al.., 1995) and some degree of 

expertise and experience with the model. 

 

 While conceptual models are of importance in the under standing of hydrologic 

processes, there are may practical situations such as streamflow forecasting where the main 

concern is with making accurate predictions at specific watershed locations. In such a 

situation, a hydrologist may prefer not to expend the time and effort required to develop and 

implement a conceptual model and instead implement a simpler system theoretic model. In 

the system theoretic approach, difference equation or differential equation models are used to 

identify a direct mapping between the inputs and outputs without detailed consideration of 

the internal structure of the physical processes. The linear time series models such as 

ARMAX (auto regressive moving average with exogenous inputs) models developed by Box 

and Jenkins (1976) have been most commonly used in such situations because they are 

relatively easy to develop and implement; they have been found to provide satisfactory 

predictions in may applications (Bras and Rodriguez-Iturbe, 1985; Salas et al.., 1980; wood, 

1980)  How-ever, such models do not attempt to represent the nonlinear dynamics inherent in 

the transformation of rainfall to runoff and therefore may not always perform well. 

 

 Owing to the difficulties associated with nonlinear model structure identification and 

parameter estimation, very few truly nonlinear system theoretic watershed models have been 

reported (Jacoby, 21966; Amorocho and Brandstetter, 1971; Ikeda et al., 1976). In most 

cases, linearity or piecewise linearity ahs been assumed (Natale and Todini, 1976a,b). The 
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model structural errors that arise from such assumptions can, to some extent, be compensated 

for by allowing the model parameters to very with time (Young, 1982; Young and Wallis, 

1985) For example, real time identification techniques, such as recursive least squares and 

state space Kalman filtering models have been applied for adaptive estimation of model 

parameters (Chiu, 1978; Kitanidis and Bras, 1980a,b; Bras and Rodriguez-Iturbe, 1985) with 

generally acceptable results.  

 

 Recently, significant progress in the fields of nonlinear pattern recognition and system 

control theory have been made possible through advances in a branch of nonlinear system 

theoretic modeling called artificial neural networks (ANN). An ANN is a nonlinear 

mathematical structure, which is capable of representing arbitrarily complex nonlinear 

processes that relate the inputs and outputs of any system. A number of papers have discussed 

the capability of three-layer feed forward ANNs to approximate any continuous input-output 

mapping and its derivatives to arbitrary accuracy (Funahashi, 1989; White, 1990; Hornik et 

al., 1990; Blum and Li. 1991; Ito, 1992; Gallant and White, 1992; Cardaliaguet and Euvrard, 

1992; Takahashi, 1993). ANN models have been used successfully to model complex 

nonlinear input-output time series relationship in a wide variety of fields (Vemuri and 

Rogers, 1994). 

 

1.3 RUNOFF – SEDIMENT PROCESS 

 
The magnitude of sediment transported by rivers has become a serious concern for the 

water resources planning and management.  The assessment of the volume of sediments 

being transported by a river is required in a wide spectrum of problems such as the design of 

reservoirs and dams; hydroelectric power generation and water supply; transport of sediment 

and pollutants in rivers, lakes and estuaries; determination of the effects of watershed 

management; and environmental impact assessment. The sediment outflow the watershed is 

induced by processes of detachment, transportation and deposition of soil materials by 

rainfall and runoff. 

 

Sediment rating curves are widely used to estimate the sediment load being 

transported by a river. A sediment-rating curve is a relation between the sediment and river 
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discharges. Such a relationship is usually established by a regression analysis, and the curves 

are generally expressed in the form of a power equation. 

 

A number of attempts have been made to relate the amount of sediment transported by 

river with flow conditions such as discharge, velocity, and shear stress. However, none of 

these equations have received universal acceptance. Usually, either the weight of the 

sediments or the sediment concentration is related to the discharge. Many times, these two 

forms are used interchangeably. McBeab and Al-Nassri (1988) examined this issue and 

concluded that the practice of using sediment load versus discharge is misleading because the 

goodness of fit implied by this relation is spurious. They have instead recommended that the 

regression be established between sediment concentration and discharge.  Karim and 

Kennedy (1990) attempted to establish relations among the velocity, sediment discharge, bed-

form geometry, and friction factor of alluvial rivers. Loped and Ffolliott (1993) point out that 

an additional complexity is introduced to the sediment concentration and streamflow relation 

due to a hysteresis effect. The sediment concentrations for a given level of streamflow 

discharge in rising stage of a streamflow hydrograph are greater than on the falling stage. The 

conventional regression approach is not able to account for this hysteresis effect. A power 

equation is normally used to represent sediment rating and its transformation. Usually, the 

power equation is log transformed and linear regression with least squares is applied to 

estimate the parameters. While applying the equation, the data are transformed to the original 

domain. The entire process introduces a bias in the estimates. This aspect has been examined 

by Ferguson (1986) and Jansson (1996).Jansson (19960 proposed a correction factor that is 

based on the variance of the data and claimed that the use of this factor leads to improvement 

in the results. 

 

As the sediment-discharge relationship is not linear, conventional statistical tools used 

in such situations such as regression and curve fitting methods are unable to model the non-

linearity in the relationship. On the other hand, the application of physics-based distributed 

process computer simulation offers another possible method of sediment prediction. But the 

application of these complex software programs is often problematic, due to the use of 

idealized sedimentation components, or the need for massive amounts of detailed spatial and 

temporal environmental data, which are not available. Simpler approaches are therefore 

required in the form of 'conceptual' solutions or 'black-box' modelling techniques. 
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Neurocomputing, in the form of  artificial neural networks provide one possible answer to the 

problematic task of sediment transfer prediction.  

 

1.4 POTENTIAL OF ANN TECHNIQUES FOR HYDROLOGICAL MODELING 
       IN BRAHMAPUTRA RIVER BASIN 

An Artificial Neural Network (ANN) is a computational method inspired by the 

studies of the brain and nervous system in biological organisms. ANN represent highly 

idealized mathematical models of our present understanding of such complex systems. One 

of the characteristics of the neural networks is their ability to learn. A neural network is not 

programmed like a conventional computer program, but is presented with examples of the 

patterns, observations and concepts, or any type of data, which it is supposed to learn. 

Through the process of learning (also called training) the neural network organizes itself to 

develop an internal set of features, that it uses to classify information or data. Due to its 

massively parallel processing architecture the ANN is capable of efficiently handling 

complex computations, thus making it the most preferred technique today for high speed 

processing of huge data. ANNs have been in existence since the 1940s, but since current 

algorithms have overcome the limitations of those early networks great interest in the 

practical applications of ANNs has arisen in recent decades (Wasserman 1989; Muller and 

Reinhardt 1990). Various ANN algorithms have an objective to map a set of inputs to a set of 

outputs. ANNs have been proven to provide better solutions when applied to (1) complex 

systems that may be poorly described or understood; (2) problems that deal with noise or 

involve pattern recognition, diagnosis, abstraction, and generalization; and (3) situations 

where input is incomplete or ambiguous by nature. It has been reported that an ANN has the 

ability to extract patterns in phenomena, which avoids the selection of a model form such as 

linear, power, or polynomial. In addition, there are many advantageous characteristics of 

ANN approach to problem solving viz.: (1) application of a neural network does not require a 

priori knowledge of the underlying process; (2) one may not recognize all the existing 

complex relationships between various aspects of the process under investigation; (3) a 

standard optimization approach or statistical model provides a solution only when allowed to 

run to completion whereas a neural network always converges to an optimal (sub-optimal) 

solution condition and; (4) neither constraints nor an a priori solution structure is necessarily 

assumed or strictly enforced in the ANN development. These characteristics render ANNs to 

be very suitable tools for handling various hydrological modeling problems.  
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1.5 OBJECTIVES OF THE STUDY 

The assessment of the runoff in a river as well as volume of sediments being trans-

ported by a river is required in a wide spectrum of problems such as the design of reservoirs 

and dams; hydroelectric power generation and water supply; transport of sediment and 

pollutants in rivers, lakes and estuaries; determination of the effects of watershed 

management; and environmental impact assessment. The soil erosion and sediment yield is 

one of the major problems in Himalayan region. The fragile ecosystem of Himalayas has 

been an increasing cause of concern to environmentalists and water resources planners. 

Accelerated erosion has occurred in this region due to intensive deforestation, large-scale 

road construction, mining and cultivation on steep slopes. Keeping this in view, a part of 

Brahmaputra River, which flows through the eastern Himalayan region of India has been 

selected for this study. 

The main objective of the present study is the application of the emerging technique, 

namely, artificial neural networks (ANNs) for modeling the rainfall-runoff process as well as 

the runoff-sediment process for a part of the Brahmaputra River in eastern Himalayan region 

of India. The principle objective of the study has been achieved through the following 

milestones: 

i. Development of stage-discharge and runoff-sediment rating curves using 

artificial neural network (ANN) models and conventional techniques for the 

important gauging sites in the Brahmaputra River basin. 

ii. Development of rainfall-runoff  and sediment-runoff models using artificial 

neural network (ANN technique for Subansiri River basin. 

iii. Validation of the formulated models. 

iv. Performance evaluation of the formulated models for the Pranhita sub-

basin. 

 
1.6 ORGANIZATION OF THE THESIS 

The remainder of the thesis is divided into seven chapters. 

CHAPTER TWO gives a brief background on Artificial Neural Networks. This 

includes the basic definitions of various terminologies used in the applied technique, various 
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ANN architectures as well as training algorithms. This chapter also addresses various issues 

of ANN application. 

CHAPTER THREE presents the literature review pertaining to some conventional 

rainfall-runoff-sediment modeling and ANN applications in rainfall-runoff modeling as well 

as runoff-sediment modeling. 

CHAPTER FOUR gives a summary of information on the Brahmaputra river basin 

and Subansiri River basin, a sub-basin of Brahmaputra river basin, India, which is considered 

for the present study along with data availability and location of various hydro-

meteorological stations in the basin. 

CHAPTER FIVE deals with the methodology of ANN model development. It gives 

the details of selection procedure of input and output variables for various ANN model 

structures along with some selected performance evaluation criteria for training, testing and 

validation of the models. It also presents some features of the software, namely, Neural 

Power used for the model development. 

CHAPTER SIX presents the results of the analysis using various developed ANN 

models.  

CHAPTER SEVEN summarises the present work and gives suggestions for future 

extensions of the work. 

At last, attempts were made to compile the useful earlier works in the field of study 

and are listed at the end in the reference section. 
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                                                                       Background of  

                Artificial Neural Networks 
 

Artificial Neural Networks provide a unique computing architecture whose potential 

has only begun to be tapped. Used to address problems that are intractable or cumbersome 

with traditional methods these new computing architectures are inspired by the structure of 

the brain and are radically different from the currently dominant architecture of programmed 

computing. 

 ANNs are massively parallel systems that rely on dense arrangement of 

interconnections and surprisingly simple processors and in these learning replaces a priori 

program development method. Emerging ANN technology is a broad body of often loosely 

related knowledge and techniques that provide practical alternatives to conventional 

computing solutions and offers some potential for approaching many currently unsolved 

problems. 

 ANN is defined as a structure (network) composed of a number of interconnecting 

units (artificial neurons). Each unit has an input/output (I/O) and implements a local 

computation or function. The output of any unit is determined by its I/O characteristics; it’s 

interconnection to other units and possibly external inputs. Although "hand crafting" of the 

network is possible, the network usually develops an overall functionality through one or 

more forms of training. 
 

2.1 CHRONOLOGY AND APPLICATION 

  The development of artificial neural networks began approximately 50 years ago 

(McCulloch and Pitts 1943), inspired by a desire to understand the human brain and emulate 

its functioning.  Within the last two decades, it has experienced a huge resurgence due to the 

development of more sophisticated algorithms and the emergence of powerful computation 

tools.  The human brain always stores the information as a pattern.  Any capability of the 

brain may be viewed as a pattern recognition task.  The high efficiency and speed with which 

the human brain processes the patterns inspired the development of ANN and its application 

in field of pattern recognition. ANN is a computing model that tries to mimic the human 

brain and the nervous system in a very primitive way to emulate the capabilities of the human 

being in a very limited sense.  ANNs have been developed as a generalization of 

mathematical models of human cognition or neural biology.  Their development is based on 

the following rules: 

2 
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1. Information processing occurs at many single elements called nodes, also referred 

to as units, cells, or neurons. 

2. Signals are passed between nodes through connection links. 

3. Each connection link has an associated weight that represents its connection 

strength. 

4. Each node typically applies a nonlinear transformation called an activation 

function to its net input to determine its output signal.   

 

             Fig. 2.1 Basic Principle Of Artificial Neural Networks 

An ANN is network of parallel, distributed information processing system that relates 

an input vector to an output vector.  It consists of a number of information processing 

elements called neurons or nodes, which are grouped in layers.  The input layer processing 

elements receive the input vector and transmit the values to the next layer of processing 

elements across connections where this process is continued.  This type of network, where 

data flow one way (forward), is known as a feed-forward network.  A feed-forward ANN has 

an input layer, an output layer, and one or more hidden layers between the input and output 

layers.  Each of the neurons in a layer is connected to all the neurons of the next layer, and 

the neurons in one layer are connected only to the neurons of the immediate next layer.   The 

strength of the signal passing from one neuron to the other depends on the weight of the 

interconnections.  The hidden layers enhance the network’s ability to model complex 

functions.    

 

2.2 BIOLOGICAL BASIS OF ANNS 

 The fundamental unit of a network is neuron, consists of nucleus in its cell body of 

soma.  Neuron or nerve cell is the complex biochemical and electrical signal processing 

factory. Tree like nerve fibers called dendrites are associated with cell body, which receives 
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signals from other neurons.  Soma is the main body of the nerve cell.  The outer boundary is 

cell membrane and the interior and outside of the cell is filled with intracellular and extra 

cellular fluid.  When some are excited above a certain level, the neuron fires, which it 

transmits an electrical signal, and that signal passes through the axon.  The long fiber, axon 

extending from the cell body, eventually branches into stands and sub-stands connecting to 

many other neurons at the synaptic junction, or synapses.  The receiving ends of these 

junctions on other cells can be found both on the dendrites and on the cell bodies.  The axon 

of a typical neuron leads to a new thousand synapses associated with other neurons.   

The transmission of a signal from one cell to another at a synapse is a complex 

chemical process in which specific transmitter substances are released from the sending side 

of the junction.  The effect is to raise or lower the electrical potential inside the body of the 

receiving cell.  If this potential reaches the threshold an electrical activity in the form of short 

pulses, is generated.  When this happens, the cell is said to have fired.  These electrical 

signals of fixed strength and durations are not down the axon.  Generally the electrical 

activity is confined to the interior of a neuron, as the chemical mechanism operates at the 

synapses. 

 

   Fig. 2.2 Schematic Diagram Of A Typical Biological Neuron 
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The dendrites serve as receptors for signals from other neurons, where as the purpose 

of axon is transmission of the generated activity to other cells (inter-neuron).  A third type of 

neuron, which receives information from muscles or sensory organs such as eye or ear, is 

called a receptor neuron.    

 

2.3 THE NEURAL NETWORK TOPOLOGY 

 The topology of a network describes the connection infrastructure of an ANN.  

Connections link the neurons together and transport the data through the network and 

different types of connections produce different performance characteristics.  Connections 

between neurons can be classified as being either inhibitory or excitatory. Inhibitory 

connections tend to prevent a neuron from reacting (negative term in a sum); while excitatory 

connections cause firing of the neuron (positive sum). At times, ANNs involve inhibitory 

connections from one neuron to all the others and this is referred to as lateral inhibition. 

 Other types of connections are delay connections (Fig. 2.3). They introduce a time lag 

into the data flow, which can be useful for time related phenomena (Day and Davenport, 

1993) like the prediction of the flood routing through a sewer system or the control of an 

overflow weir. 

The definition of so called layers and clusters is another frequently applied 

representation of the topology of an ANN. A layer can be seen as a group of neurons, which 

share the same input and output connections, but do not interconnect with themselves: 

Connections occur only between layers and not within a layer (Fig. 2.4). Layers are often 

classified as being input, output or hidden; whereby an input layer receives data from the 

outside world, an output layer returns data to the outside world; and hidden layers perform 

unknown operations between the input and output layers. 

 As soon as connections exist within a layer, then reference is made to a cluster of 

neurons. If within a cluster, lateral inhibition is executed for each individual neuron 

competition is created (Fig. 2.5). Competition occurs, when all the neurons in a cluster are 

connected to each other through inhibitory connections (Rumelhart and Zipser, 1986). 

Consequently, neurons in each cluster compete with each other for the right to recognize 

some feature in the input. The neuron that resembles the input vector the most, wins and 

yields an output vector, while the other neurons in the cluster are denied any response at all.  

Eventually, each type of vector presented to the cluster, will cause the response of a different 
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neuron in the cluster. Hence, each cluster in an ANN could classify a certain feature in the 

input data. 

 Another important type of connection, which has a large influence on the general 

behavior of an ANN, is the feedback connection. A feedback connection directs some or all 

the data back into the system, thus creating signal loops and cyclic behavior of the 

corresponding ANN.  According to the literature (Oppenheim et al, 1983) a connection is 

defined as being a feedback connection when the output of a system is used to control or 

modify the input. Since ANNs consist of numerous I/O neurons, the term feedback will be 

further clarified in order to avoid confusion. 

 

 

 

 

 

 

Fig. 2.3 Delay Connections 

 

 

 

     
                  

 

 

 

Fig. 2.4 Neuron Layers                   Fig. 2.5 Neuron Clusters 

  

 An external feedback connection directs the current output vector to the current input 

vector of the ANN; whereby the new vector is re-routed through the neurons (Fig. 2.6). This 

process is repeated until the output vector shows no significant variations anymore. An 
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internal feedback connection directs the output signal of one neuron to the input of another 

neuron (Fig. 2.7). Often multiple feedback loops are used between neurons in the same 

cluster or between different layers. 

 

 

 Fig. 2.6 External Feedback Connections       Fig. 2.7 Internal Feedback Connections 

 
In general, Feedback networks (also referred to as recurrent networks) are defined as 

being systems that settle or relax into an output vector. The data will pass through some or all 

of the neurons more than once.  Because the actual state of a network is dependent on its 

previous states, the same input vector can produce different output vectors. Stability and 

convergence characterize the performance of a feedback network. Feedback networks are 

also referred to as dynamic non-linear systems. 

When there is a total lack of feedback connections, one generally speaks of feed-

forward networks. This means that a given input vector will always produce one output 

vector. Once trained (fixed weights), this input vector will always produce the same output 

vector. Often feed-forward networks are referred to as instantaneous static non-linear 

mapping systems. 

 
 

2.4 LEARNING ALGORITHMS 

 The weight distribution in every ANN is unique and will determine the specific 

response of the network to any given input vector. In order to perform a required process 

task, these weights must be determined in advance through a learning process. The learning 

process for ANNs encompasses the adjustment of weights and this process makes use of a 

learning algorithm and a training set of examples.  

The learning process in an ANN can be seen as teaching the network to yield a 

particular response to a specific input. This often consists of an iterative process; whereby the 

network tries to match output vectors to desired ones and uses any deviations to adjust some 
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or all of its weights. The rules that determine the magnitude of these adjustments are 

contained in the learning algorithm. 

 There are three modes through which the learning process can be carried out viz.  

supervised, unsupervised and batch.  In the supervised learning mode, a teacher provides the 

desired response to the network as soon as an input is applied, thus giving the network an 

indication how it performs (Fig. 2.8). A child learning the alphabet at school is an example 

for this type of learning. 

 In the unsupervised learning mode, the desired response is unknown (Fig. 2.9). 

Weight adjustments are based on observations of responses to inputs on which there is 

marginal or no knowledge. Often, this results in self-organization of neurons, trying to 

recognize patterns, regularities or separating properties in the given input data.  For example, 

a child learning to ride a bicycle will do so with minimal help from outside. The child must 

figure out independently how to find a balance. 

 

 

Fig. 2.8 Supervised Learning Mode 

 
 

Fig. 2.9 Unsupervised Learning Mode 
 

 
 

Fig. 2.10 Batch Learning Mode 
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 In batch learning mode, weights are determined in one go, by using a complete set of 

I/O vectors (Fig. 2.10). All knowledge must be known a priori and is then implemented 

instantly in the network. There are no normal incremental learning steps. This method of 

storing input vectors can be seen as putting data records in a database. 

 Learning algorithms themselves are often based on error minimization. Examples are 

the least mean square (LMS) learning rule or error gradient descent; but numerous other, 

more refined routines exist, all of which try to optimize some kind of learning signal 

(learning rate, maximum likelihood value, cross entropy) and so improve network 

performance. The resulting modifications made to the weights, are then either based on an 

award/punishment rule (dot product neuron) or chance (probabilistic neurons). 

 After numerous training cycles, once the ANN has learned the examples with 

considerable accuracy, test data is presented to the ANN, which it has never encountered 

before. The resulting outputs are validated and the network performance is tested using 

multiple criteria such as generalization ability, robustness, stability, convergence and 

plasticity. It is only after these results are proven satisfactory, that the ANN is implemented. 

If test results or performances are unsatisfactory, the network is often retrained using other 

learning examples, set in a different order, or using more training cycles, etc. Often, for 

instance, the number of nodes is changed to improve learning; however certain drawbacks to 

this practice exist. 

 When enough nodes are available, the ANN can reproduce any desired response 

because it stores the information instead of learning the mechanics of the cause/effect 

relationship of the data. This is called over lifting of the data and as a consequence the ANN 

will have poor generalization ability.  

Too few nodes, insufficient data or incorrect data can lead to under fitting of data, again 

resulting in bad generalization abilities. 

Special algorithms exist which not only change the weights during learning, but also 

change the topology and architecture of the ANN, as done on various levels of interaction. 

Such an algorithm could, for example, determine weights, network structure and even decide 

on which training and test examples to use; for instance, a situation could be thought of, 

where the ANN is confronted with hundreds of rainfall events and the next rain must be 

predicted.  

 Finally, some algorithms are not restricted to training use only. Online learning is a 

powerful characteristic that enables an ANN to adapt temporarily or permanently to changing 
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conditions. Self organizing maps, for example, can continue learning with each new input 

vector they receive. An ANN could be created, for example, which simulates flow through a 

sewer pipe and adapts its parameters when the resistance of a sewer pipe becomes higher; 

independent of any intervention from an external source.  

 

2.5 STRUCTURE 

 In order for an ANN to learn a certain response, it must be provided with numerous 

examples. The data contained in these examples is crucial for the performance to the network. 

Incorrect input data will certainly result in slow learning, unstable or unreliable networks. 

Therefore, the training and test examples should be chosen with care and (pre-) processed 

accordingly.  

 The term input vector will be used to refer to the input data needed for one training, 

test or on-line example (Fig. 2.11).  Consecutively output vector refers to the final calculated 

result of the ANN. Each input/output vector has a certain dimension R, representing different 

features of the data, e.g. 1(1) represents the catchment size, 1(4) is the type of vegetation, etc. 

When Q different vectors are presented to the ANN randomly or in ordered fashion, we can  

 
Fig. 2.11 Input Vectors and their Dimensions 

 

define a matrix P, which defines a set of Q I/O  vectors of dimension R (P = Q x R). In the 

training of an ANN, which should, for example, determine the runoff coefficient of an urban 

catchment area, the input matrix P could consist of 100 catchments (Q=100), each 

representing specified catchment characteristics. The output vectors would then consist of 

single values, representing the runoff coefficients. 
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 The most important pre-processing actions performed on input data or learning 

examples, is normalization, filtering and scaling.   

 Data is normalized, when outliers are present in the data-series. It reduces the 

influence of these outliers and assumes that while the overall magnitude of each signal may 

vary, the relation between each feature may not.  Data is filtered, when unwanted high or low 

frequency signals perturb the main signal (e.g., high frequent water level fluctuations due to 

wind-waves).  However, ANNs are known to act as filters themselves, making pre-filtering of 

data only necessary in extreme cases. 

 Scaling of data is performed to increase training speed only.  It is common practice to 

scale different data series to a uniform range [0 1].  For example, when the degree of 

pollution for a surface water sample is determined by using the concentrations of nitrate and 

benzene; the smaller amounts of benzene will give a better indication of the degree of 

pollution than the larger nitrate concentrations. If data is not scaled, the learning procedure 

will initially be dominated by the (in absolute terms) larger nitrate values instead of the 

smaller benzene values. 

  

2.6 ARCHITECTURE 

 The architecture of an ANN describes the layout of its structure. It defines the number 

and size of the implemented clusters and layers, as well as the topology used to connect these 

groups of neurons with each other. The ANN architecture itself is often changed when 

learning algorithms and I/O data modifications fail to improve the ANN performance. Simple 

modification can be made by reducing or increasing the number of nodes or deleting neuron 

interconnections. Different techniques exist for determining an optimal ANN architecture for 

a given I/O data problem (Refenes and Vithlani, 1991).  In addition to implementation of 

improved neuron functions, learning algorithms or determination of the optimal number of 

nodes, modularization can be applied. Modularization is implemented when one specific type 

of ANNs for different tasks within a system makes best use of the specialized capabilities of 

each of the independent ANN modules (Nadi, 1991).  For example, the vast amount of real 

time flow data in a complex sewer system, could be compressed to several abstract 

parameters first (using a self organizing ANN), before it is fed into another ANN which 

simulates the actual outflow of the sewer system. 
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2.7 PERFORMANCE INDICATORS 

During learning or network optimization, it is often necessary to monitor the effects of 

a certain intervention or system alteration. Numerous performance indicators exist to quantify 

progression or drawbacks of certain methods: 

 Generalization is the ability of the ANN to formulate an answer to a problem it has 

never seen before (predict a future flow rate using on-line data). 

 Fault tolerance is the ability to keep processing, albeit with reduced accuracy and/or 

speed, even though data is missing or neurons have been disabled/destroyed (A water 

level meter fails). 

 Convergence speed is the rate at which the network state changes as it moves to a 

stable state. 

 The states of an ANN can be mathematically expressed in a function, representing a 3 

dimensional surface of the computational energy of the ANN. Computational energy 

describes the stable states or solutions of an ANN and the paths leading to them.  

These stable states are represented as valleys (energy minima) in the 3 dimensional 

surfaces, also called basins of attraction. By changing the weights, this energy surface 

is changed and the valleys get larger and deeper, increasing the convergence speed of 

an ANN. 

 Adaptability is the ability of an ANN to modify its response to changing conditions. 

Four characteristics govern this ability: learning, self organization, generalization and 

training. 

 Reliability is the ability to produce the same result, when the same input vector is 

repeatedly presented to a network. Reliability is mostly used to describe the 

performance of feedback networks, since feed-forward networks always produce the 

same result.  

 Robustness is the ability to produce the same result, even though input data is noisy, 

contains data gaps and contradictory data. 

 

 Sensitivity is closely related to robustness, it shows the extent to which a network 

response will change, due to variations in the features of the input vector.  
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 Three other less obvious indicators that can also be used are: 

 

 Memory requirements: Some ANNs need less (hardware) memory to perform their 

task, than others. This can be decisive for data base related problems that use pattern 

storage for instance (Hopfield network). 

 Amount of training data needed: for some problems, lack of data poses a constant 

hindrance to efficient modeling. Thus an ANN requiring less training data to learn a 

specific response is better suited for these kinds of problems. 

 Learning speed: The speed at which new data is learned, can be crucial for on-line 

applications in fast changing environments. This performance indicator is often used 

to evaluate new learning algorithms. 
 

 With these performance indicators, it is possible to make an evaluation table, showing 

the different ANN types and their relative performances.  

 

2.8 MODEL OF AN ARTIFICIAL NEURAL NETWORK 
 

The main function of the ANN paradigms is to map a set of inputs to a set of outputs. 

A single processing unit or neuron is shown in Fig.2.12. The incoming signals are multiplied 

by respective weights through which they are propagated toward the neurons or node, where 

they are aggregated (summed up) and the net input is passed through the activation function 

to produce the output. 

 

 

     Fig. 2.12 A Single Artificial Neuron (Perceptron) 
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Let x i (i = 1,2, ... n)  are inputs and wi  (i = 1,2, … n) are  respective weights. The net input 

to the node can be expressed as 

i

n

i
i wxnet ∑

=

=
1              …(2.1) 

The net input is then passed through an activation function ƒ(.) and the output y of the node is 

computed as 

y = ƒ(net)                                                                            …(2.2)      

To ensure that the neurons response is bounded that is the actual response of the neuron is 

conditioned, or damped, as a result of large or small activating stimuli and thus is 

controllable.     

Sigmoid function is the most commonly used nonlinear activation function for solving  

ANN Problems which is given by        y = ƒ(net) = nete−+1
1 . 

This activation function is shown in Fig. 2.13. 
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   Fig. 2.13 The Sigmoid Function 
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2.9 MULTILAYER FEED-FORWARD NETWORK 

The most important attribute of a multilayer feed-forward network is that it can learn 

a mapping of any complexity (Zurada. 1992). This network is made up of multiple layers of 

neurons.  In this architecture, besides the input layer and the output layer, the network also 

has one or more than one intermediate layer(s) called hidden layer(s). Each layer is fully 

connected to the preceding layer by interconnection strengths or weights. Fig.2.14 illustrates 

this type of network consisting of a single hidden layer. As can be seen, the generic feed-

forward network is characterized by the lack of feedback. Even though this network has no 

explicit feedback connection when the input is mapped into the output, the output values are 

often compared with the desired output values, and also an error signal can be employed for 

adapting the network’s weights during the learning process.   

       

Fig. 2.14 Multilayer Feed – Forward Artificial Neural Network Configuration 

2.10 OTHER ANN NETWORKS 

Some of the most important networks are explained below: 

 

 2.10.1 Back Propagation Network (BP) 

 Back Propagation network (BP) are the most widely used ANNs. The name comes 

from the fact that an error term is back propagated through the network during learning and 

used to change the weights (Fig. 2.15). However, no feedback links are actually incorporated 
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and there are many other ANNs which also back propagate error terms; so this (historical) 

name can be confusing. 

 Normal BP networks have simple supervised feed-forward structures and often 

consist of an input and an output layer with one or more hidden layers in between. They are 

fast, relatively simple to train and the most easily to understand. Theoretically any recurrent 

ANN can be simulated by a back propagation algorithm (Such as a Fourier series 

approximation).  As BP networks suffer from learning deficiencies, like slow learning and 

convergence to local minima, numerous enhancements have been proposed (Haario and 

Jokinen, 1991, Sato, 1991, Yu et al., 1993). Nevertheless, BP networks are used in 80% of 

today's applications and excellent in the areas of prediction and simulation.  

2.10.1.1 Back propagation algorithm 

Back propagation is systematic method of training multilayer artificial neural 

networks.  It has been used by scientist and engineering community to the modeling and 

processing of many quantitative phenomena using neural networks.  This learning algorithm 

is applied to multilayer feed forward network consisting of neurons with continuous 

differentiable activation functions.  Such networks associated with the back propagation 

learning algorithm are called back propagation networks. In the back-propagation algorithm, 

the network weights are modified by minimizing the error between desired (target) and 

calculated (predicted) outputs.  This algorithm is based on the error-correction learning rule. 

 

Fig. 2.15 Directions of Signal Flow in a Multilayer ANN 

 
 

Fig. 2.15 shows the directions of signal flow and error propagation in a multilayer 

artificial neural network. Back-propagation is an iterative learning process in which all 

   Forward propagation of signals 

   Back propagation of errors  
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weight parameters are randomly initialized and then updated (in each iteration) through feed-

forward calculations and back-propagation of errors. 

 

2.10.1.2 Learning factors of back propagation 

One of the major issues concerning back propagation algorithm is its convergence.  

The convergence of back propagation is based on some important learning factors such as the 

initial weights, the learning rate, the nature of training set and the architecture of the network.   

 

(a) Initial weights 

 The initial weights of a multilayer feed forward network strongly affect the ultimate 

solution.  They are typically initialized by small random values (between -1.0 and 1.0 or -0.5 

to +0.5).  Equal weights values cannot train the network properly if the solution requires 

unequal weights to be developed.  The initial weights cannot be large, otherwise the sigmoid 

will saturate, from the beginning and the system will stock at a local minimum.  The 

saturation is avoided by choosing the initial values of the synoptic weights to be uniformly 

distributed inside a small range of values.  The range should not be too small as it can cause 

the learning to be very small.    

 

(b) Frequency of weight updates 

There are two approaches to learning 

1. In “per-pattern” learning, used, in the algorithm, weights are changed after every 

sample presentation. 

2. In “per-epoch” (or “batch-mode”) learning, weights are updated only after all samples 

are presented to the network.  An epoch consists of such a presentation of the entire 

set of training samples.  Weight changes suggested by different training samples are 

accumulated together into a single change to occur at the end of each epoch. 

 

(c) Learning rate (η) 

 A control parameter used by several learning algorithms, which affects the changing 

of weights. The bigger learning rates cause bigger weight changes during each iteration. 

Weight vector changes in backpropagation are proportional to the negative gradient of the 

error; this guideline determines the relative changes that must occur in different weights 

when a training sample (or a set of samples) is presented, but does not fix the exact 
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magnitudes of the desired weight changes.  The magnitude change depends on the 

appropriate choice of learning rate, η.  A large value of η will lead to rapid learning but the 

weight may oscillate, while low values imply slow learning.  This is typical of all gradient 

descent methods.  The right value of η will depend on the application.  Values between 0.1 

and 0.9 have been used in many applications in the literature.   

 

(d) Momentum (α ) 

 A simple method of increasing the rate of learning and yet avoiding the danger of 

instability is to include a momentum term to the normal gradient descent method.  To give 

each weight some inertia or momentum so that it tends to change the direction of average 

downhill force that it feels.  The scheme is implemented by giving a contribution from the 

previous step to each weight change.  The range of momentum is  and a value of 0.9 is 

generally used for momentum factor. 

(e) Data normalization  

The variables fall in the range of a 0 to 1, because it smoothens the solution space and 

averages out some of the noise effects.  Such process is called normalization or 

standardization.   

 

(f) Number of hidden nodes 

 The size of a hidden layer is usually determined experimentally.  In practice, the 

number of hidden layer is relatively smaller than the number of nodes in the input layer. If the 

network fails to converge, more neurons are added gradually to the hidden layer till a good 

performance is achieved.   

 

(g) Data training and generalization 

 The training data submitted to the network for it to learn and generalized the relation 

between input and output should be sufficient and proper.  There is no rule for choosing the 

training data.  Networks with too many trainable parameters for a given amount of training 

data learn well but do not generalize well.  This phenomena is called over fitting with too few 

trainable parameter, the network fails to learn the training data.   

 The available data is divided into two parts one for training another for testing.  The 

purpose of training is to determine the set of connection weights that cause the neural 
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network to estimate outputs that are sufficiently close to target values.  The training data 

should contain sufficient patterns. 

 The training set is further divided into two subsets: 

 A subset used for estimation of the model ( i.e. training the networks) 

 A subset used for evaluation of the performance of the model.  The validation subset 

is usually 10 to 20 of the training set.   

 

(h) Strength of Feed-forward Neural Network 

 They are able to recognize the relation between the input and output variables without 

knowing physical consideration. 

 They work well even when the training set contains noise and measurement errors. 

 There is no need to make assumption about the mathematical form the relationship 

between input and output.  
 

2.10.1.3 Feed-forward calculation 

In the feed-forward calculation, the nodes in the input layer receive the input signals 

which are passed to the hidden layer and then to the output layer. The signals are multiplied 

by the current values of weights, and then the weighted inputs are added to yield the net input 

to each neuron of the next layer. The net input of a neuron is passed through an activation or 

transfer function to produce the output of the neuron. Considering the ANN shown in 
Fig.2.14, the procedure for feed-forward calculations in different layers is as follows 

 

The net input to  jth node of the hidden layer is given by 

 

i

ni

i
jij xwhneth ∑

=

=
1

            …(2.3) 

 

where ni  is the number of neurons in the input layer and jiwh  is the connection weight 

between ith node of the input layer and jth node of the  hidden layer. The output of jth node of 

the hidden layer hj is 

 

hj=f(nethj)                …(2.4) 

where f(.) is the activation function, e.g. a sigmoid activation function. Thus 
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( )j
j neth

h
−+

=
exp1

1                        …(2.5) 

Similarly, the net input to kth node of the output layer is given by 

 

 ∑
=

=
nh

j
jkjk hwonety

1
           …(2.6) 

where, nh is the number of neurons in the hidden layer and kjwo  is the connection weight 

between jth node of the hidden layer and kth node of the output layer. 

The output of kth node of the output layer is 

 

yk=f(netyk)                           …(2.7) 

 

Now operating through the sigmoid activation function 

 

( )k
k nety

y
−+

=
exp1

1                         …(2.8) 

     

After calculation of these outputs the error between desired and calculated output is 

computed which is propagated in the backward direction, as explained below. 

 

2.10.1.4 Error back-propagation  

        The error calculated at the output layer is propagated back to the hidden layers and 

then to the input layer, in order to determine the updates for the weights. This method is 

derived from the well-known gradient descent method in which the weights updatation is 

performed by moving in the direction of negative gradient along the multidimensional 

surface of the error function. The sum square error E for a single input-output pair data set is 

given by 

 

          E = ( )
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k
kk ty                              …(2.9) 
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Where,  t k is the desired output or target at the kth node and yk is the calculated output at the 

same node.  In order to minimize the above error function, weights are updated by subtracting 

incremental changes in the weights from their old values. 

That is,  

kj
old
kj

new
kj wowowo ∆−=                                                                      …(2.10) 

 (j=1, 2, 3.. . nh, and k=1,2,3.. no) 

ji
old
ji

new
ji whwhwh ∆−=                                                                     … (2.11) 

(i=1, 2, 3.ni, and j=1,2,3.. nh) 
 

Where, kjwo∆  and jiwh∆ are incremental changes in the weights for output layer and hidden 

layer respectively. 

The incremental changes in the weights for output layer are given by 
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where, η  is the learning rate.  

By using chain rule, 
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E
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Now, differentiating Eqn (2.6) with respect to kjwo , 

j
kj

k h
wo
nety

=
∂
∂                                                      …(2.14) 

 Differentiating Eqn (2.8) with respect to knety , 

( )kk
k

k yy
nety

y
−=

∂
∂

1                     …(2.15) 

Also differentiating Eqn (2.9) with respect to ky  yields 
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k
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y
E
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∂
∂

kyδ=                      …(2.16) 
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where kyδ  is the error at the output side of kth output node.  Substituting Eqn 2.14 and Eqn. 

2.16  in Eqn 2.13, the Eqn 2.12 may be represented as, 

( ) jkkkkj hyyywo .1. −=∆ ηδ           …(2.17) 

or  

jkkj hywo ∆=∆ η                      …(2.18) 

where,   )1(. kkkk yyyy −=∆ δ                     …(2.19)  

 

ky∆  is the error at the input side of the kth output node.  Similarly the incremental changes in 

the weights for the hidden layer are given by 
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By using chain rule  
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Now, differentiating Eq. (2.8) with respect to knety∂ , 

( )kk
k

k yy
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y
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∂
∂

1                                                                         …(2.22) 

Differentiating Eq. (2.6) with respect to jh∂ , 
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j
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∂                                 …(2.23) 

Differentiating Eq. (2.5) with respect to jneth∂ , 

 ( )jj
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∂
1                       …(2.24) 

Also differentiating Eq. (2.3) with respect to jiwh∂ , 
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 Substituting Eqs. (2.16), (2.22) and (2.25) in Eq. (2.21), then the Eq. 2.20 may be 

represented as, 

ijjkjkk
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k
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ji xhhwoyyy
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Ewh )1()1(

1
−−=
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Using Eq. (2.19) 

ijjkj

no

k
kji xhhwoywh )1(

1
−∆=∆ ∑

=

η          …(2.27) 

where,  
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∆=
1

δ                      …(2.28) 

Here, jhδ  is the error at the output side of the jth  hidden node.  

( )jjjj hhhh −=∆ 1δ                                                                           …(2.29)                                                                                                                                 

Here, jh∆  is the error at the input side of the jth  hidden node. 

Substituting Eq. (2.29) in Eq. (2.27) 

ijji xhwh ∆=∆ η                         …(2.30) 

The learning process starts with a random set of weights. During the training process, 

weights are updated through error back-propagation using Eq. (2.17) or (2.18) and Eq. (2.30) 

respectively for output and hidden layers. The flowcharts for training of ANN using back-

propagation algorithm and that for testing of the trained ANN are shown in Fig. 2.16 and Fig. 

2.17 respectively. 

 

2.10.2 Adaline Network 

 Adaline networks were one of the earliest ANNs. They consist of single neuron 

elements employing only linear functions and a simple Least Mean Square (LMS) learning. 

This makes them suited for simple classifications and restricted non-linear system simulation. 
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Fig. 2.16 Flowchart for training using back-propagation algorithm 
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             Fig. 2.17 Flowchart for Testing of the Trained ANN 
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2.10.3 Kohonen Network 

 The Kohonen network (Kohonen, 1988) was one of the earliest unsupervised 

feedfoward networks; being able to self organizes its neuron weights. The network maps 

input data into a 2 - dimensional grid of neurons with a special distance learning algorithm. 

The result is a surface area that shows peaks at different areas for different input vectors. This 

network was originally designed for speech mapping and recognition. 

 

2.10.4 Hopfield Network 

The Hopfield network is an example of a batch learning feedback network. A given 

set of known vectors can be stored in the network by using a special formula to determine the 

weights.  After that, any input vector will slowly converge to the nearest stored pattern (Fig. 

2.18). These types of networks are referred to as associative memories; and relate an input to 

some stored patter; numerous variations have been invented (BAM, CAM).  Hopfield 

networks are used for database managing, image restoration and other addressable memory 

problems.  

 

Fig. 2.18 The Hopfield Network 

2.10.5 Adaptive Resonance Theory Network (ART) 

 ART or adaptive resonance theory network is an unsupervised feedback network, 

which has a complicated, changing structure (Rusell, 1991).  It uses competitive neurons in 

self organizing and self stabilizing clusters, which classify input vectors to self defined 

groups. When an input vector is discriminating enough, the network is able to define a new 

classification group and thus store a new pattern. 
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2.10.6 Linear Vector Quantization Network (LVQ) 

 Linear Vector Quantization (LVQ) network is a supervised feedback network.  It is a 

method whereby supervision and competitive layers are combined. The competitive layer 

finds subclasses among then input data; and these are then classified into user defined target 

classes. In contrast to back propagation classification networks, LVQ can also classify non-

linearly separable sets of vectors. 

 

2.10.7 Elman Network 

 It has two hidden layer back propagation network, with the addition of a feedback 

connection from the output of the first hidden layer to its input. This feedback path allows 

Elman networks to learn to recognize and generate temporal patterns as well as spatial 

patterns (Elman, 1990). 

 

2.11 SELECTION OF NETWORK ARCHITECTURE 

One of the most important attributes of a layered neural network design is choosing 

the architecture. The number of input nodes is simply determined by the dimension of the 

input vector to be generalized or associated with a certain output quality. The dimension of 

the input vector corresponds to the number of distinct feature of the input pattern. Similarly 

the number of neurons in the output layer can be made equal to the dimension of vectors to be 

associated. The size of the hidden layer(s) is the most important consideration when solving 

the actual problems using multilayer feed-forward neural networks. The most popular and 

effective strategy for selecting the appropriate number and size(s) of the hidden layer(s) is 

trial-and-error procedure. A number of networks with one or two hidden- layer(s) are trained 

with different combination of hidden neurons and a network is selected that yields the 

minimum root mean square error (MSE). It is also important that the size of the network 

should be as small as possible. An effective criterion for selecting the best network from 

these two points of view, i.e. minimum RMSE and smallest size, is Akaike’s Information 

Criterion (AIC). The AIC is an operational way of trading off the size of the network against 

how well the network fits the data (Akaike, 1974). It is given by 

 







+=

n
EnkAIC 2ln2                                                                                  …(3.31)               
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Where, E is the sum-square-error; k is the number of parameters; and n is the number 

of observations. The network with minimum value of AIC is considered to be the best 

network. 

2.12 ISSUES IN ANN APPLICATION 

    By now, ANNs are firmly established as a viable black–box modeling tool. However, 

along with numerous advantages, ANNs have some disadvantages too. The first and foremost 

is the requirement of adequate data of desirable quality and quantity. To be fair to ANNs, this 

is a crucial requirement with all modeling techniques and ANN cannot be an exception. 

Presently clear guidelines are not available except that the entire range of likely inputs should 

be covered. Guidelines to select network architecture for a given type  

of problems are also badly missing. In this context, ASCE (2000b) has raised the following 

very pertinent questions, which need to be resolved. 

 

 Can ANNs make to reveal any physics? The application of ANNs can get a boost if 

some physical explanation of their functioning is available. This will also help in 

selecting the appropriate type of network and learning algorithm for a given problem. 

Some neural networks can provide statistical interpretations in terms of conditional 

probabilities. For instance, a feed forward network can learn the posterior probability 

of a classification. This problem is receiving attention of many researchers. 

 Can an optimal training set be identified? ANNs cannot learn without data –they are 

data intensive and poor training data will result in poor learning. An optimal data set 

should fully represent the modeling domain, have minimum required data points and 

there should not be repetition of data. So far, there are no guidelines about these. 

 Can ANNs improve time series analysis? The time series models are based on 

extracting the correlation and dependence structure of the data. While ANNs have 

been not given any insight into the process, it would be welcome if ANNs can bring 

out the relationships among the variables and highlight those features of input data are 

not revealed by other techniques. 

 Can training of ANNs be made adaptive? The most time-consuming part of ANN 

application is training. As new data become available, the previously trained ANN has 

to be re-training. Since the catchment properties change with time, it is important to 

incorporate the new information in the model. The ANN applications will be 
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immensely benefited if the training can be made adaptive, i.e., the new information is 

incorporated into the models without the necessity of complete re-training. 

 Are ANNs good extrapolators? Many studies have shown that ANNs work well in the 

range of input data that were used for training and their performance deteriorates if 

during application, the input data are of this range. This aspect is receiving attention 

of hydrologists. Imrie et al. (2000) have presented a methodology for training ANNs 

to produce models that generalize well on new data and can extrapolate beyond the 

range of values included in the calibration range. They claimed good results the data 

from the catchment or the River Trent and a modified cascade- correlation algorithm.     

  

A think and solution to the above issues will certainly help in better understanding of 

the artificial neural networks. Of course ANNs cannot be considered as a panacea for all 

types of problems of water resources or an alternative to other modeling approaches. Gupta et 

al. (2000) have aptly comment: “ We do not advocate that the ANN approach be generally 

used in place of that the ANN approach does not- in particular, the conceptual approach has 

potential to be applied to ungaged watersheds or to simulate the potential behavior of a 

watershed under land use changes… Further, implementation of the ANN approach does not 

require the considerable amount of expertise and data required to calibrate a conceptual 

watershed model.” Logically then, ANN should be viewed as alternative to computing 

techniques. 
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                                            Review of Literature 
 

In recent years ANNs have shown exceptional performance as regression tools, 

especially when used for pattern recognition and function estimation. They are highly non-

linear, and can capture complex interactions among the input variables in a system without 

any prior knowledge about the nature of this interactions (Hammerstrom, 1993). The main 

advantage of ANNs is that one does not have to explicitly assume a model form, which is a 

prerequisite in conventional modelling approaches. Indeed, in ANNs the data points 

themselves generate a relationship of possibly complicated or orthodox shape. In comparison 

to the conventional methods, ANNs tolerate imprecise or incomplete data, approximate 

results, and are less vulnerable to outliers (Haykin, 1994). They are highly parallel, i.e.; their 

numerous independent operations can be executed simultaneously. Although application of 

ANN approach in hydrological modeling is recent and limited, it has already produced very 

encouraging results. A number of researchers have investigated the potential of artificial 

neural networks in modeling the rainfall runoff process as well as the runoff sediment 

process. The review is given separately in the following sections. 

3.1 ANN APPLICATIONS IN RAINFALL-RUNOFF MODELING 

 In a preliminary study, Halff et al. (1993) designed a three-layer feedforward ANN 

using the observed rainfall hyetographs as inputs and hydrographs recorded by the U.S. 

Geological Survey (USGS) at Bellvue, Washington, as outputs. The authors decided to use 

five nodes in the hidden layer. A total of five storm events were considered. On a rotation 

basis, data from four storms were used for training, while data from the fifth storm were used 

for testing network performance. A sequence of 25 normalized 5 min rainfalls was applied as 

inputs to predict the runoff. This study opened up several possibilities for rainfall-runoff 

application using neural networks. 

In an application using two neural networks, Zhu et al. (1994) predicted upper and 

lower bounds on the flood hydrograph in Butter Creek, New York. Off-line predictions were 

made when present flood data were not available and estimates had to be based on rainfall 

data alone. On-line predictions were based on both rainfall and previous flood data. Data for 

ANN testing and validation were generated from a nonlinear storage model. Model 

3 
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performance was strongly influenced by the training data set. The authors found that, while 

the ANN did well during interpolation, predictions made by ANNs outside the range of the 

training data set were not encouraging. The process of trying to make ANNs adaptive was 

computationally very demanding, because the entire training process needed to be repeated 

with each new data pair. As the lead time for forecasting increased, ANN performance 

deteriorated. By comparison, ANNs were found to be marginally better than fuzzy inference-

based techniques. 

In a more detailed study along similar lines, Karunanithi et al. (1994) were interested 

in estimating streamflows at an ungauged site on the Huron River in Michigan, based on data 

from USGS stream gauging stations located 30 km upstream and 20 km downstream of the 

sampling site. They compared ANN performance to an empirical two-station power law 

relationship that is based on log-transformation of the actual streamflow values. Fig. 3 shows 

a comparison of observed versus predicted daily flows for a testing period of two years. Daily 

data were found to exhibit rapid fluctuations, and the authors worked with five-day non-

overlapping averages and five-day moving averages to obtain a smoother representation 

when using regression. However, the raw data were utilized as ANN inputs. They used the 

cascade-correlation algorithm so that the network architecture could be determined during 

training. When using empirical regression equations, the largest errors were associated with 

the highest stream flows. Neural networks were found to better predict these high events, 

while both methods predicted low streamflows fairly well. These authors stated that ANNs 

are capable of adapting their complexity to accommodate temporal changes in historical 

streamflow records. They also found that including another gauging station that supposedly 

had little or no effect on streamflows at the gauging site caused the performance of the, 

regression technique to deteriorate, while the ANN performance was not affected. The 

authors claimed that ANNs are likely to be more robust when noisy data is present in the, 

inputs. Karunanithi et al. (1994) found lag time to be important in predicting streamflows. 

This reflects the longer memory associated with streamflows. The authors did not use any 

statistical techniques to evaluate the lag time and include it in the network architecture.  

Lorrai and Sechi (1995) developed and applied neural networks to rainfall – runoff 

transformation.  The network architecture was developed with two hidden layers and sigmoid 

response function by using back propagation algorithm.  Monthly rainfall, runoff, and 

temperature were used to develop the model by dividing the data into three ten year period 

and verified in rest two ten years’ block.    They found that artificial  neural  networks  

provide  higher  efficiency  during  model development and were superior to simple 
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multivariate auto-regressive model.  However, the verification of results of the developed 

models was not so promising. 

Smith and Eli (1995) applied a back-propagation neural network model to predict 

peak discharge and time to peak over a hypothetical watershed. Data sets for training and 

validation  were generated by either a linear or a nonlinear reservoir model. By representing 

the watershed as a grid of cells, it was possible for the authors to incorporate the spatial and 

temporal distribution information of rainfall into the ANN model. As an example, the authors 

chose a synthetic watershed that was composed of 5 X 5 cells. A tree-type drainage pattern 

was superimposed on the grid to concentrate runoff towards a single watershed outlet. Each 

cell was treated as a reservoir and water was routed in a cascading fashion. A rainfall depth of 

one unit was applied instantaneously at several cells on a random basis. Each rainfall pattern 

in the training set was presented to the network as an input image consisting of Boolean 

values with 1 representing a wet cell and O a dry cell. The peak discharge and the time to 

peak corresponding to each rainfall pattern were computed using a linear and nonlinear 

reservoir model and served as target outputs for the ANN model. Many such patterns formed 

the training set. These cases represented single-storm events for which the number of input 

units was the same as the number of cells. To simulate the occurrence of several storms in a 

sequence, three stochastically generated rainfall patterns were imposed consecutively over 

the synthetic watershed. In this case, the input layer had 75 units, corresponding to three 

rainfall patterns requiring 25 cells each. The output was either the watershed runoff alone or 

the runoff and the time to peak. The number of nodes in the hidden layer was determined by 

trial and error for each case. For single-storm events, the peak discharge and the time to peak 

were predicted well by the neural network, both during training and testing. The authors were 

less successful for multiple-storm events. One reason for this may have been insufficient 

number of nodes in the output layer. In a separate application dealing with multiple storms, 

Smith and Eli (1995) represented the entire hydrograph by a Fourier series with 21 

coefficients, rather than just two attributes as in single-storm events. The ANN output layer 

now consisted of 21 nodes corresponding to the Fourier coefficients. Using this method, the 

authors found the prediction of the entire hydrograph to be very accurate for multiple storm 

events. 

The issue of enhancing the training speed using a three-layer network was addressed 

by Hsu et al. (1995) and Gupta et al. (1997). These studies advocated the linear least squares 
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simplex (LLSSIM) algorithm, which partitions the weight space to implement a synthesis of 

two training strategies. The input-hidden layer weights were estimated using a multistart 

down-hill simplex nonlinear optimization algorithm, while the hidden-output layer weights 

were estimated using optimal linear least square estimation. The nonlinear portion of the 

search was thereby confined to a smaller dimension space, resulting in acceleration of the 

training process. The simplex search involves multiple starts that are initiated randomly in the 

search space, and the probability of finding local minima is virtually eliminated. The authors 

applied this technique to daily rainfall-runoff modeling of the Leaf River Beam near Collins, 

Mississippi. The performance of neural networks was compared with the linear ARMAX 

time series model and the conceptual SAC-SMA model. Even though all the models seemed 

to underestimate low flows in general, the ANN performance was found to be superior to the 

other models.  Gupta et al. (1997) concluded that the LLSSIM is likely to be a better training 

algorithm than back-propagation or conjugate gradient techniques, especially in the absence 

of a good initial guess of weights.  

In another related study over the Leaf River Basin, Hsu et al. (1997) used a three-

layer feedforward ANN and a recurrent ANN to model daily rainfall-runoff. They concluded 

that the feedforward ANN needed a trial-and-error procedure to find the appropriate number 

of time-delayed input variables to the model and also was not suitable to distributed 

watershed modeling. On the other hand, the recurrent ANN was able to provide a 

representation of the dynamic internal feedback loops in the system, eliminating the need for 

lagged inputs and resulting in a compact weight space. However, both ANNs performed 

equally well at runoff prediction. 

In a study by Minns and Hall (1996), data for network training consisted of model 

results from one storm sequence, and two such sequences were generated for testing. Each 

storm sequence was generated using a Monte Carlo procedure that preserved predetermined 

storm characteristics. For each such storm sequence, the corresponding runoff sequence was 

constructed using a simple nonlinear model for flood estimation (called RORB) that allowed 

for different levels of nonlinearly in the response. A three-layer network with back-

propagation was used. Network inputs consisted of concurrent and 14 antecedent rainfall 

depths and 3 antecedent runoff values, and the network output was current runoff. It was 

found that ANN performance was hardly influenced by level of nonlinearity, with 

performance deteriorating only slightly for high levels of nonlinearity. Using 2 hidden layers 
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1 and the associated extra cost on network training could rectify this. Minns and Hall (1996) 

point out the importance of standardization based j on maximum and minimum values of 

inputs and outputs. Whenever the network was required to predict,. out of range' , of the 

standardized values, the performance dropped significantly, suggesting that ANNs are not 

very good extrapolators. 

Jayawardena and Fernando (1995, 1996) and Fernando and Jayawardena (1998) also 

used RBF methods for flood forecasting. They illustrated the application of (REF) artificial 

neural networks using an orthogonal least squares algorithm (OLS) to model the rainfall-

runoff process. Hourly rainfall and runoff data from a 3.12 km2 watershed were collected and 

used in developing the ANN. The autocorrelation of runoff, and the cross correlation between 

rainfall and runoff indicated that the discharges at a certain time were influenced by 

antecedent rainfall from up to three previous hours. Therefore, the input nodes contained 

three antecedent discharges ~d two rainfall values-that is, Q(t-1), Q(t-2), Q(t-3), R(t-2), and 

R(t-3). The output was the discharge at the current hour, Q(t). Both a multiple layer 

perceptron (MLP) neural network and a REF network were developed and compared with the 

statistical ARMAX model. Even though both the REF and MLP networks performed well, it 

was found that RBF networks could be trained much faster than MLP networks using back 

propagation. Both networks performed better than the ARMAX model. 

Shamseldin (1997) compared ANNs with a simple linear model, a season-based linear 

perturbation model, and a nearest neighbor linear perturbation model. Daily average values of 

rainfall and runoff from six different watersheds around the world were collected for this 

study. Three different types of input information were compiled from this data. These were 

weighted averages of recent rainfall measurements, seasonal information on <I>-index and 

average discharges, and nearest neighbor information. Four different scenarios based on 

combinations of some or all of these types of input information were examined. The author 

adopted a three-layer neural network, and the conjugate gradient method was used for 

training. A two-parameter gamma function representation was chosen as the impulse 

response of the rainfall series. The parameters were also estimated as part of the training 

procedure. The network output consisted of the runoff time series. The results suggested that 

the neural networks generally performed better than the other models during training and 

testing. 
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Yang et al. (1997) described the development of an ANN model to simulate 

fluctuations is midspan water-table depths and drain outflows as influenced by daily rainfall 

and potential evapotranspiration rates.  The model was developed using field observations of 

water-table depths from 1991 to 1993 and drain outflows from 1991 to 1994 made at an 

agricultural field in Ottawa, Canada.  The root mean squared error and standard deviation of 

errors of simulated results were found to range from 46.5 to 161.1 mm and 46.6 to 139.2 mm, 

respectively, thus showing potential applications of ANNs in land drainage engineering. 

Dawson and Wilby (1998) used a three-layer back-propagation network to determine 

runoff over the catchments of the Rivers Amber and Mole. The two catchments are about 140 

km2 in size, and are prone to floods. ANN inputs were past flows and averages of past 

rainfall and flow values. The ANN output consisted of predicting future flows at 15 rnin 

intervals up to a lead time of six hours. Their results show that ANNs performed about as 

well as an existing forecasting system that required more information. When compared with 

actual flows, the ANNs appeared to overestimate low flows for the Mole River. 

Thirumalaiah and Deo (1998) highlighted the use of neural networks in real- time 

forecasting of water levels at given site (Jagdalpur on river Indravathi, a major tributary of 

the river Godavari) with a lead time of 1 and 2 day of daily stream levels continuously 

throughout the year based on the same levels at some upstream gauging station and/or using 

the stage time history recorded at the same site.  The network was trained by using three 

algorithms, namely, error back propagation, cascade correlation, and conjugate gradient.  The 

training results were compared with each other.  The network was verified with untrained 

data.    

Tokar and Johnson (1999) reported that ANN models provided higher training and 

testing accuracy when compared with regression and simple conceptual models. Their goal 

was to forecast daily runoff for the Little Patuxent River, Maryland, with daily precipitation, 

temperature, and snowmelt equivalent serving as inputs. It was found that the selection of 

training data has a large impact on accuracy of prediction. The authors trained and tested the 

ANN with wet, dry, and average-year data, respectively, as well as combinations of these, in 

order to illustrate the impact of the training series on network performance. The ANN that 

was trained on wet and dry data had the highest prediction accuracy. The length of training 

record had a much smaller impact on network performance than the types of training data. 
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Jain and Srivastava (1999) studied the application of ANNs for reservoir inflow 

forecasting and further development of reservoir operation policy.  An auto-regressive 

integrated moving average time series model and an ANN based model were fitted to the 

monthly inflow data series and their performances were compared.  The ANN was found to 

model the high flow better, whereas, the low flows were better predicted through the auto-

regressive integrated moving average model.  Reservoir operation policies were formulated 

through dynamic programming.   

Zealand et al. (1999) investigated the utility of artificial neural networks approach for 

short term forecasting of stream flows to a portion of the Winnipeg River system in North-

West Ontario, Canada.  Forecasting was conducted on a catchment area of approximately 

20,000 km2 using quarter monthly time intervals.  A very close fit was obtained during the 

calibration phase and the ANNs developed consistently outperformed a conventional model 

during the verification phase for all four forecasts lead-time.   

Thirumalaiah and Deo (2000) demonstrated the application of neural networks to real-

time forecasting of hourly flood runoff with a warning time of a few hours (i.e with a lead 

time of 1, 2, and 3 hour) and daily river stage with a warning time of a few days (with a lead 

time of 1day and 2 day) at given sites in Godavari river basin, as well as to the prediction of 

rainfall sufficiency for India.  The study showed the capability of neural networks in all of 

these applications and they performed better than the statistical models. 

ASCE Task Committee (2000 a) investigated the preliminary application and role of 

artificial neural networks (ANNs) in hydrology.  The study offers a brief comparison of the 

nature ANNs and other modeling philosophies in hydrology.  A discussion on the strengths 

and limitations of ANNs brought out the similarities they had with other modeling 

approaches, such as the physical model.     

ASCE Task Committee (2000 b) examined the hydrologic applications and role of 

ANNs in various branches of hydrology.  It was found that ANNs are robust tools for 

modeling many of the nonlinear hydrologic processes such as rainfall- runoff, stream flow, 

ground-water management, water quality simulation and precipitation.  A good physical 

understanding of the hydrologic process being modeled can help in selecting the input vector 

and designing a more efficient network.  However, artificial neural networks tend to be very 

data intensive, and there appears to be no established methodology for design and successful 

implementation.  The merits and limitations of ANNs were discussed and potential research 

avenues were explored briefly. 
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Anmala et al. (2000) used ANNs for predicting runoff over three medium- sized 

watersheds in Kansas.  The performance of ANNs possessing different architectures and 

recurrent neural networks were evaluated by comparisons with other empirical approaches.  

Monthly precipitation and temperature formed the inputs and monthly average runoff was 

chosen as the output.  The issues of overtraining and influence of derived inputs were 

addressed and it appeared that a direct use of feed-forward neural networks without time-

delayed input may not provide a significant improvement over other regression techniques. 

Thandaveswara and Sajikumar (2000) investigated rational procedure for clustering  

or  grouping  of  river  basins  based  on  the  hydrological homogeneity  by applying artificial 

neural network.  First, an attempt was carried out to check whether the classifications in the 

data hyperspace have any physical meaning or not.  Subsequently, it was attempted to check 

whether the clustering with factors that affect runoff has any effect in runoff values of each 

cluster.  The statistics presented indicates that there was congregation about the cluster 

center.  Finally, they investigated the use of clustering of basins based on homogeneity in 

data hyperspace. 

In an another study Tokar and Markus (2000) have compared the ANN models with 

traditional conceptual models in predicting watershed runoff as a function of rainfall, snow 

water equivalent, and temperature. The ANN technique was applied to model watershed 

runoff in three basins with different climatic and physiographic characteristics – the Fraser 

River in Colorado, Raccoon Creek in Iowa, and Little Patuxent River in Maryland. In the 

Fraser River watershed, the ANN technique was applied to model monthly streamflow and 

was compared with a conceptual water balance (watbal) model. In the Raccoon River 

watershed, the ANN technique was applied to model the daily rainfall-runoff process and was 

compared to the Sacramento soil moisture accounting (SAC-SMA) model.  The daily 

rainfall-runoff process was also modeled using the ANN technique in the Little Patuxent 

River basin and the training and testing results were compared to those of a simple 

conceptual rainfall-runoff (SCRR) model. In all cases, the ANN models provided higher 

accuracy, a more systematic approach, and shortened the time spent in training of the models. 

Coulibaly et al (2001) also agree that various ANN-based models tend to outperform 

the conventional models on forecasting peak hydrologic events. In their study, the authors 

have addressed the issue of selection of appropriate model input using a peak and low flow 

criteria (PLC). The optimal artificial neural network (ANN) models selected using the PLC 

significantly outperform those identified with the classical root-mean-square error (RMSE) or 
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the conventional Nash-Sutcliffe coefficient (NSC) statistics. The comparative forecast results 

indicate that the PLC can help to design an appropriate ANN model to improve extreme 

hydrologic events (peak and low flow) forecast accuracy.  

Birkundavyi et. al. (2002) investigated the performance of ANNs as potential models 

capable of forecasting daily streamflows in the Mistassibi River basin, located in the 

northeastern Quebec. The results based on mean square errors and Nash coefficients show 

that ANNs outperform the deterministic model PREVIS for up to 5-day-ahead forecasts. 

Moreover, the results obtained with the ANN are also superior to the ones obtained with a 

classic autoregressive model coupled with a Kalman filter. 

   Chibanga et al (2003) have modeled the derived flow series( by simple reservoir 

routing) and the time series of historic flow measured at the Kafue Hook Bridge (KHB), 

Kafue River basin in Vietnam, separately using artificial neural networks (ANNs). For each 

of these two series, relevant inputs were given to a host of three layer feedforward back 

propagation (FF-BP), ANNs to predict the current, derived flow or KHB flow. A couple of 

ANN models selected on the basis of defined criteria were then used to forecast the flows at 

in time steps ahead. To evaluate the forecasting performance of the best ANN models, 

comparison with best autoregressive moving average models with exogenous inputs ARMAX 

were made. In both cases the ANNs gave more robust forecasts over long terms than 

ARMAX models thereby making ANNs a viable alternative in flow forecasting  

Chiang et al (2004) have presented a system comparison of two basic types of neural 

networks, static and dynamic, their study. Two back-propagation learning algorithms, the 

standard BP and conjugate gradient (CG) method, were used for the static network and the 

real- time recurrent learning (RTRL) algorithm was used for the dynamic–feedback network. 

In comparison of searching algorithms for a static network, the results show that CG method 

was superior to the standard BP method in terms of the efficiency and effectiveness of the 

constructed network’s performance. For a comparison of the static neural network using the 

CG algorithm with the dynamic neural network using RTRL, the authors concluded that: (i) 

the static-feedforward neural network could produce satisfactory results only when there 

were a sufficient and adequate training data set, (ii) the dynamic neural network generally 

could produce better and more stable flow forecasting than the static network, and (iii) the 

RTRL algorithm helps to continually update the dynamic network for learning- this feature is 
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especially important for the extraordinary time-varying characteristics of rainfall-runoff 

process.  

Sarkar (2005) has presented the application of artificial neural network (ANN) 

methodology for real time flood forecasting in a medium size catchment of the Ajay River in 

Jharkhand state of India. The author has designed and developed back propagation ANN 

models for 1-hour ahead to 6-h ahead runoff predictions at the Sarath gauging site of the Ajay 

River basin. Various combinations of the flood events have been used for the training of 

ANN models. The performance of each model structure has been evaluated using common 

performance criteria, i.e., root mean square error (RMSE), coefficient of correlation (r), and 

coefficient of determination (R2). The criteria selected by the author to avoid over training 

was generalization of ANN through cross validation. Fairly accurate hourly runoff 

predictions have been obtained using the data of six flood events suggesting that the ANN 

models are particularly suited for flood forecasting purposes. The two important parameters, 

when predicting a flood hydrograph, are the magnitude of peak discharge and the time to 

peak discharge. The author has found that the ANN flood forecasting models have been able 

to predict this information with great accuracy. However, the forecasting efficiency goes 

down with increasing lead time.  

Jy S. Wu et al. (2005) demonstrated the application of ANNs for watershed-runoff 

and stream-flow forecasts. A watershed runoff prediction model was developed to predict 

stormwater runoff at a gauged location near the watershed outlet.  Another stream flow 

forecasting model was formulated to forecast river flow at downstream locations along the 

same channel.  Input data for both models include the current and preceding records of 

rainfall and stream flow gathered at the watershed outlet and downstream locations.   

Computational algorithms for both models were based on commercially available software.  

A case study was conducted on a small urban watershed in Greensboro, North Carolina.  

These two ANN - hydrologic forecasting models were successfully applied to provide near-

real-time and near-term -flow predictions with lead times starting from the present time and 

advancing to a few hours late on 15-min increments.  An important aspect of this research 

was the development of methodology for input data organization, model performance 

evaluation, and ANN processing techniques.  Encouraging results obtained indicate that ANN 

- hydrologic forecasting models can be considered an alternate and practical tool for stream-

flow forecast, which is particularly useful for assisting small urban watersheds to issue timely 

and early flood warnings.   
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Sarkar et al. (2006)  developed back propagation ANN runoff models to simulate  and  

forecast  daily  runoff   for   a  part  of  the Satluj river basin of India and  observed that only 

rainfall and temperature considered as input are not adequate to develop a model for the 

simulation as well as forecasting of the catchment runoff, resulting from rainfall and 

snowmelt contribution.  In order to improve upon the performance of the models, it was 

suggested that to consider the runoff of the upstream site as an additional input to the model. 

 

Thomas et al. (2006) developed ANN model and trained using the daily rainfall and 

stream flow for the Sindh river up to Madhikhera dam site for a period of seven years from 

1992 to 1999 and then tested for 2000 and 2001 and the results were compared with the 

observed daily discharges of the corresponding period.  The efficiency of the ANN model 

varied between 70.36% and 94.57% during calibration and between 63.02% and 92.76% 

during validation.  The results suggested that a three layer feed forward ANN having a single 

hidden layer with five neurons in the hidden layer can effectively be used to relate the 

Rainfall-Runoff process. 

Kumar and Viswanadh (2006) established relationship between rainfall and runoff 

using feed forward multi layer neural networks and investigated the performance of neural 

networks as potential models capable of forecasting annual runoff.  The study was taken up 

for Osmansagar catchment, Hyderabad, Andhra Pradesh, India.  The best fit model (1-10-1) 

was trained using data for 38 years (1941 – 1979) and validated on 14 years (1980 – 1993).  

Based on the evaluation of the performance criteria such as root mean square error and the 

correlation coefficient, the study revealed that ANNs perform well in estimating the runoff. 

Kisi (2007) presented a comparison of different artificial neural network algorithms 

for short term daily streamflow forecasting.  Four different ANN algorithms, namely, 

backpropagation, conjugate gradient, cascade correlation, and Levenberg – Marquardt were 

applied to continuous flow data of the North Platte river in the United States.  The models 

were verified with untrained data.  The results from the different algorithms were compared 

with each other.  The correlation analysis was used in the study and found to be useful for 

determining appropriate input vectors to the ANNs. 

Kumar (2007) developed an ANN model for the prediction of runoff from Nagwan 

watershed of Damoder Valley Corporation (DVC), Hazaribagh, Jharkhand, India.  He used 

the back propagation algorithm in the training of feed-forward multilayer neural networks 

with fixed iteration 15000 and 17000 for single and two hidden layer(s) respectively.  The 

daily rainfall and runoff data of active monsoon period i.e. 1st June to 30th September were 
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used in the development of the model.  The data of the years 1993 – 1999 were used for the 

training; years 2000 – 2002 were used for testing of the trained ANN.  Six selected 

performance evaluation criterion, viz. correlation coefficient, coefficient of efficiency, root 

mean square error, integral square error, coefficient of variation and volumetric error were 

employed for the performance evaluation of model.    He found that network architecture 

with five number of inputs (rainfall of current day, rainfall of two previous days and runoff of 

two previous days), six neurons in the single hidden layer, and one neuron in output layer 

yielded the good results for the runoff prediction. 

Kalteh (2008) developed a rainfall-runoff model using an ANN approach in a 

watershed in northern Iran,, and  described different approaches including Neural 

Interpretation Diagram, Garson’s algorithm, and randomization approach to understand the 

relationship learned by the ANN model. The results indicated that ANNs are promising tools 

not only in accurate modelling of complex processes but also in providing insight from the 

learned relationship, which would assist the modeller in understanding of the process under 

investigation as well as in evaluation of the model. 

Modarres (2009) developed an effective ANN model for studying the rainfall-runoff 

relationship in the main upstream basin of the Zayandehrud watershed in the western region 

of Isfahan Province in the center of Iran and verified the models by the global statistics such 

as root mean square error (RMSE), coefficient of correlation and coefficient of efficiency. In 

the second step, the non-parametric test for the equality of the mean, variance and probability 

distribution of the observed and simulated runoff were used to validate rainfall-runoff models 

and to compare them with global statistics. The study illustrated that the modelers should 

select appropriate and relevant evaluation measures from the set of existing metrics based on 

the particular requirements of each individual applications. 

3.2 ANN APPLICATIONS IN RUNOFF-SEDIMENT MODELING 

There are numerous studies related to the application of ANN’s to rainfall-runoff 

modeling (ASCE Task Committee, 2000). But the application of ANN approach for modeling 

runoff-sediment process is very recent and few, but has already produced very encouraging 

results. 

 In a research project by Rosenbaum (2000), ANN technique has been used to predict 

sediment distribution in Swedish harbors. The authors have chosen factored wave energy, 

sedimentation potential and discharge as input to three layer back propagation ANN models 
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for the prediction of sediment quantity. Seven years data has been used for training and two 

years for verification. The authors foun that though the ANN model had sunstantial error in 

prediction, particularly for the high peaks still the general trend of sedimentation could be 

predicted. Considering the uncertainties associated with the assessment of sedimentation, the 

predictive accuracy of the ANN was reasonable. 

Baruah et. al. (2001) developed neural network models of Lake surface chlorophyll 

and sediment content from LandsatTM imagery in order to assess the water quality of the 

lake Kasumigaura in Japan. In this study, back propagation neural network has been used to 

model the transfer function between chlorophyll concentration and suspended solid, and 

sensor received radiances at the first four bands of LandsatTM. The authors found that back 

propagation neural network with only one hidden layer could model both the parameters 

better than conventional regression techniques.  

     Jain (2001) used the ANN approach to establish an integrated stage-discharge-

sediment concentration relation for two sites on the Mississipi River. Based on the 

comparison of results for two gauging sites, the author has shown that the results are much 

closer to the observed values than the conventional technique and that a network whose 

inputs are the current and previous stage, discharge, and sediment concentration of two 

previous periods can adequately map the current discharge and sediment concentration. 

In a study by Nagy et al. (2002), an ANN is used to estimate the natural sediment 

discharge in rivers in terms of sediment concentration. The selection of water and sediment 

variables used in the model is based on the prior knowledge of the conventional analysis, 

based on the dynamic lows of flow and sediment. The model parameters as well as fluvial 

variables are extensively investigated in order to get the most accurate results. In verification 

the estimated sediment concentration values agree well with the measured ones. The model is 

evaluated by applying it to other groups of data from different rivers. The authors have 

addressed the importance of choosing an appropriate neural network structure and providing 

field data to that network for training purpose. It is found in general that the ANN approach 

gives better results compared to several commonly used formulas of sediment discharge. 

Tayfur (2002) used ANNs for sheet sediment transport modeling. A three-layer feed-

forward artificial neural network structure was constructed and a back propagation algorithm 

was used for the training of ANNs. Even based runoff driven experiment sediment data were 

used for the training and testing of the ANNs. In training, data on slope and rainfall intensity 
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were fed into the network as inputs and data on sediment discharge were used as target 

outputs. The performance of the ANNs was tested against that of the most commonly used 

physically based models, whose transport capacity was based on one of the dominant 

variables- flow velocity, shear stress, stream power and unit stream power. The comparison 

results revealed that the ANNs performed as well as the physically-based models for 

simulating nonsteady-state sediment loads from different slopes. 

Cigizoglu (2002) made a comparison between ANNs and sediment rating curves for 

two rivers with very similar catchment areas and characteristics in the north of England. Data 

from one river are used to estimate sediment concentrations and flux in the other for both 

estimation techniques. The author has highlighted the potential advantages of ANNs in 

sediment concentration and flux estimation. In particular, an ANN approach can give 

information about the structure of events (hysteresis) which is impossible to achieve with 

sediment rating curves.       

Agarwal (2002) studied the simulation and forecasting of runoff and sediment yield 

for Vamsadhara river catchment for different time units (viz. daily, weekly, ten-daily, and 

monthly) using a new improved ANN modeling technique and the results so obtained were 

compared with the single - input linear transfer function and multi-input linear transfer 

function models. Two computer algorithms in FORTRAN language (viz. ANN.FOR and 

LTF.FOR) were developed respectively for ANN, linear transfer function simulation and 

forecasting models.  The multi-input linear transfer function runoff simulation models for 

different time base were found superior to respective single-input linear transfer function 

models in model development but not in model verification.  However, the pattern learned 

ANN runoff simulation models for different time units were found superior to both single-

input and multi-input linear transfer function models only in model development.  The ANN 

sediment yield simulation models were superior to single-input and multi-input linear transfer 

function models both in calibration and verification. 

Yitian and Gu (2003) developed a model for prediction flow and sediment transport in 

a river system by incorporating flow and sediment mass conservation equations into an 

artificial neural network (ANN), using actual river network to design the ANN architecture, 

and expanding hydrological applications of the ANN modeling  technique to sediment yield 

predictions.  The ANN river system model is applied to modeling daily discharges and annual 

sediment discharges in the Jingjiang reach of the Yangtze River and Dongting Lake, China.  
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By the comparison of calculated and observed data, it was demonstrated that the ANN 

technique is a powerful tool for real-time prediction of flow and sediment transport in a 

complex network of rivers.  A significant advantage of applying the ANN technique to model 

flow and sediment phenomena was the minimum data requirements for topographical and 

morphometric information without significant loss of model accurachy.  The methodology 

and results presented show that it is possible to integrate fundamental physical principles into 

a data-driven modeling technique and to use a natural system for ANN construction.  This 

approach may increase model performance and interpretability while at the same time making 

the model more understandable to the engineering community. 

In a study by Sarkar et al (2004), ANN technique has been applied to model the 

sediment-discharge relationship of an Indian river. Daily data of sediment load and discharge 

of Kosi River of Bihar in India have been used. The authors have made a comparison 

between the results obtained using ANNs and sediment rating curves. The sediment load 

estimations in the river obtained by ANNs have been found to be significantly superior to the 

corresponding classical sediment rating curve ones. A significant advantage of using the 

ANN approach is that it can successfully model the hysteresis effect that is associated with 

unsteady flow in open channels. 

Singh (2004) has done a case study for the Satluj basin to demonstrate the 

applicability of ANN in model development.  Rainfall-runoff and runoff-sediment models 

have been developed for the Sutluj River basin upto Kasol gauge site.  The results of ANN 

modeling have been compared with those of the conventional techniques, viz. linear multiple 

regression approach for rainfall-runoff modeling and sediment rating curve analysis for 

runoff-sediment modeling.  A back propagation ANN with the generalized delta rule as the 

training algorithm has been employed in this study.  The structure of all ANN models was 

three layered back propagation ANN with non-linear sigmoid as activation function 

uniformly applied between the layers with constant 0.15 and 0.5 learning rate and momentum 

respectively.  The statistical and hydrological evaluation criteria used were root mean square 

error (RMSE), correlation coefficient (r), coefficient of efficiency (CE) and volumetric error 

(EV). 

Kisi (2005) investigated the abilities of neuro-fuzzy (NF) and neural network (NN) 

approaches to model the streamflow-suspended sediment relationship by using the daily 

streamflow and suspended sediment data for two stations - Quebrada Blanca station and Rio 

Valenciano station - operated by the US Geological Survey as case studies. The NF and NN 
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models were established for estimating current suspended sediment values using the 

streamflow and antecedent sediment data. The sediment rating curve and multi-linear 

regression were also applied to the same data. Statistic measures were used to evaluate the 

performance of the models.  Based on comparison of the results, it was found that the NF 

model gives better estimates than the other techniques. 

 

Schnabel and Maneta (2005) tested the performance of a feed-forward back 

propagation artificial neural network (ANN) and a multiple quadratic regression (MQR) 

model using data from the Parapunos Catchment, a wooded rangeland located in SW Spain.  

Both models were calibrated using rainfall and discharge time series and derived variables 

such as rainfall intensity, runoff coefficient and rate of change of discharge.  The final set of 

variables used in the analysis was done based on sensitivity analysis for the ANN model and 

based on an analysis of statistical significance of parameters in the MQR model.  The 

performance of ANN and MQR were similar but better than rating curves of a single variable.  

In addition, ANN and MQR were similar but better than rating curves of a single variable.  In 

addition, ANN and MQR can reproduce the hysteretic loop of sediment-discharge 

relationship. 

Sinha (2005) used a multilayered feed forward neural network to establish an 

integrated stage-discharge-sediment concentration relation for Thebes site for the Mississippi 

river and found excellent reproducing ability of ANNs for the observed values and also found 

that a network whose inputs are the current and previous stage, discharge and sediment 

concentration of two previous periods, can adequately map the current discharge and 

sediment concentration.  The performance of input training set based on only stage data was 

observed very poor.   

Agarwal et al. (2006)  simulated the daily, weekly, ten-daily, and monthly monsoon 

runoff and sediment yield from an Indian catchment using back propagation artificial neural 

network (BPANN) technique, and the results compared with the observed and with those due 

to single and multi-input linear transfer function models.  Normalizing the input by its 

maximum for the pattern and batch learning algorithms in BPANN, the model parsimony was 

achieved through network pruning utilizing error sensitivity to weight a criterion, and it was 

generalized through cross validation.  The performance based on correlation coefficient and 

coefficient of efficiency suggested the pattern-learned artificial neural network (ANN) based 

on runoff simulation to be superior to both single- and multi-input models in calibration.  The 

single input models were however superior in verification.  The ANN based sediment-yield 
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models performed better than both single- and multi-input models in calibration as well as 

cross-validation/verification. 

Kerem et al. (2006) estimated the river suspended sediment using another ANN 

algorithm, generalized regression neural network, GRNN, as the majority of the ANN 

applications in water resources involve the employment of feed forward back propagation 

(FFBP) method. They opted the present methodology, because the Generalized regression 

neural network does not require an iterative training procedure as in back propagation method 

and the GRNN simulations do not face the frequently encountered local minima problem in 

FFBP applications, as GRNN does not generate estimates physically not plausible. The neural 

networks were trained using daily river flow and suspended sediment data belonging to 

Juniata Catchment in USA. The suspended sediment estimations provided by two ANN 

algorithms are compared with conventional sediment rating curve and multi linear regression 

method results. The mean squared error and the determination coefficient were used as 

comparison criteria. Also the estimated and observed sediment sums are examined in addition 

to two previously mentioned performance criteria. The ANN estimations were found 

significantly superior to conventional method results.   

Raghuvanshi et al. (2006) developed five ANN models to predict daily and weekly 

runoff and sediment yield for Nagwan watershed, Damodar Valley Corporation (DVC), 

Hazaribagh, Jharkhand, India.  All five models were developed both with one and two hidden 

layers. Each model was developed with five different network architectures by selecting a 

different number of hidden neurons. The models were trained using monsoon season (June to 

October) data of five years (1991– 1995) for different sizes of architecture, and then tested 

with respective rainfall and temperature data of monsoon season (June to October) of two 

years (1996 – 1997). Training was conducted using the Levenberg – Marquardt 

backpropagation where the input and output were presented to the neural network as a series 

of learning sets. Simulated surface runoff and sediment yield were compared with observed 

values and the minimum root-mean-square error and Nash Sutcliff efficiency (coefficient of 

efficiency) criteria were used for selecting the best performing model. Regression models for 

predicting daily and weekly runoff and sediment yield were also developed using the above 

training datasets, whereas these models were tested using the testing datasets. In all cases, the 

ANN models performed better than the linear regression based models. The ANN models 

with a double hidden layer were observed to be better than those with single hidden layer. 

Further, the ANN model prediction performance improved with increased number of hidden 

neurons and input variables. As a result, models considering both rainfall and temperature as 



 58 

input performed better than those considering rainfall alone as input. Training and testing 

results revealed that the models were predicting the daily and weekly runoff and sediment 

yield satisfactorily. Therefore, these ANN models based on simple input can be used for 

estimation of runoff and sediment yield, missing data, and testing the accuracy of other 

models. 

Tayfur and Guldal (2006) developed an artificial neural network (ANN) model to 

predict daily total suspended sediment (TSS) in rivers.  The model is constructed as a three-

layer feedforward network using the back-propagation algorithm as training tool.  The model 

predicts TSS rates using precipitation (P) data as input.  For network training and testing 240 

sets of data sets were used.  The model successfully predicted daily TSS loads using the 

present and past 4 days precipitation data in the input vector with R2 = 0.91 and MAE = 34.22 

mg/L.  The performance of the model was also tested against the most recently developed 

non-linear black box model based upon two-dimensional unit sediment graph theory (2D-

USGT).  The comparison of results revealed that the ANN model requires a period of more 

than 75d of measured P-TSS data for training the model for satisfactory TSS estimation.  The 

statistical parameter range (xmin-xmax) plays a major role for optimal partitioning of data into 

training and testing sets.  Both sets had comparable values for the range parameter. 

Kisi (2007) investigated the abilities of range-dependent neural networks (RDNN) to 

improve the accuracy of streamflow-suspended sediment rating curve in daily suspended 

sediment estimation.  A comparison was made between the estimates provided by the RDNN 

and those of the following models: Artificial neural networks (ANN), linear regression (LR), 

range-dependent linear regression (RDLR), sediment rating curve (SRC) and range-

dependent sediment  rating curve (RDSRC).  The daily streamflow and suspended sediment 

data belonging to two stations – Calleguas  Station and Santa Clara Station – operated by the 

US Geological Survey were used as case studies.  Based on comparison of the results, it was 

found that the RDNN model gives better estimates than the other techniques.  RDLR 

technique was also found to perform better than the single ANN model. 

Lohani et al. (2007) applied a fuzzy logic technique to model the stage-discharge-

sediment concentration relationship. The technique has been applied to two gauging sites in 

the Narmada basin in India. Performance of the conventional sediment  

rating curves, neural networks and fuzzy rule-based models was evaluated using the 

coefficient of correlation, root mean square error and pooled average relative 

(underestimation and overestimation) errors (PARE) of sediment concentration. Comparison 
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of results showed that the fuzzy rule-based model could be successfully applied for sediment 

concentration prediction as it significantly improves the magnitude of prediction accuracy. 

Jain (2008) investigated the abilities of compound neural networks (CNNs) to model 

integrated stage-discharge-suspended sediment rating relationship.  Using the data of two 

stations on the Mississippi River and one station on Conococheague Creek, CNNs were 

trained.  A comparison of the results of applying a single ANN and a CNN shows that the 

estimates of CNN are closer to the observed values than those of single ANN. 

Rai and Mathur (2008) developed a back propagation feed-forward artificial neural 

network (ANN) model for the computation of event-based temporal variation of sediment 

yield from the watersheds. The training of the network was performed by using the gradient 

descent algorithm with automated Bayesian regularization, and different ANN structures 

were tried with different input patterns. The model was developed from the storm event data 

(i.e. rainfall intensity, runoff and sediment flow) registered over the two small watersheds and 

the responses were computed in terms of runoff hydrographs and sedimentographs. Selection 

of input variables was made by using the autocorrelation and cross-correlation analysis of the 

data as well as by using the concept of travel time of the watershed. Finally, the best fit ANN 

model with suitable combination of input variables was selected using the statistical criteria 

such as root mean square error (RMSE), correlation coefficient (CC) and Nash efficiency 

(CE), and used for the computation of runoff hydrographs and sedimentographs.  Further, the 

relative performance of the ANN model was also evaluated by comparing the results obtained 

from the linear transfer function model. The error criteria viz. Nash efficiency (CE), error in 

peak sediment flow rate (EPS), error in time to peak (ETP) and error in total sediment yield 

(ESY) for the storm events were estimated for the performance evaluation of the models. 

Based on these criteria, ANN based model results better agreement than the linear transfer 

function model for the computation of runoff hydrographs and sedimentographs for both the 

watersheds.  

In a study by Rajaee et al. (2009), artificial neural networks (ANNs), neuro-fuzzy 

(NF), multi linear regression (MLR) and conventional sediment rating curve (SRC) models 

were considered for time series modeling of suspended sediment concentration (SSC) in 

rivers. As for the artificial intelligence systems, feed forward back propagation (FFBP) 

method and Sugeno inference system were used for ANNs and NF models, respectively. The 

models were trained using daily river discharge and SSC data belonging to Little Black River 

and Salt River gauging stations in the USA. Obtained results demonstrated that ANN and NF 
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models were in good agreement with the observed SSC values; while they depicted better 

results than MLR and SRC methods. The values of cumulative suspended sediment load 

estimated by ANN and NF models were closer to the observed data than the other models.  

Based on the above review it seems that more work on ANN based studies is required 

to be done on different river basins of India using the latest software to get better prediction 

accuracy.  The ANN studies available in the field of hydrology provide enough evidence that 

the ANNs are highly capable in learning and extracting the behavior of a system, when 

sufficient data is available for the training of the ANN model.  ANNs have proven application 

efficiency especially in the hydrological processes like rainfall, runoff, sediment yield etc.  

The performance of the developed ANN model has frequently been compared with other 

empirical, conceptual and statistical models.  The comparison is normally input dependent 

and the ANNs have been resulted with the superior performance.  The use of artificial neural 

networks for runoff and sediment yield simulation and forecasting is an advancing area of 

research that is yet be fully explored.    
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4.1  THE BRAHMAPUTRA RIVER 

The Brahmaputra is a major international river covering a drainage basin of 580,000 

km2, extending from 82°E to 97° 50' E longitudes and 25° 10' to 31° 30' N latitudes. The 

basin spans over an area of 293,000 km2 (50.51%) in Tibet (China), 45,000 km2 (7.75%) in 

Bhutan, 194,413 km2 (33.52%) in India and 47,000 km2 (8.1%) in Bangladesh. Its basin in 

India is shared by Arunachal Pradesh (41.88%), Assam (36.33%), Nagaland (5.57%), 

Meghalaya (6.10%), Sikkim (3.75%) and West Bengal (6.47%) (59). Originating in a great 

glacier mass at an altitude of 5,300 m just south of the lake Konggyu Tso in the Kailas range, 

about 63 km southeast of Mansarovar lake in southern Tibet at an elevation of 5300m, the 

Brahmaputra flows through China (Tibet), India and Bangladesh for a total distance of 2880 

km, before emptying itself into the Bay of Bengal through a joint channel with the Ganga. It 

is known as the Tsangpo in Tibet (China), the Siang or Dihang in Arunachal Pradesh (India), 

the Brahmaputra in Assam (India) and the Jamuna, Padma, and Meghana in Bangladesh.  

Before entering India, the river flows in a series of big cascades as it rounds the 

Namcha-Barwa peak. The river forms almost trough receiving the flows of its tributaries both 

from North and South. The river, with its Tibetan name Tsangpo in the uppermost reach, 

flows through southern Tibet for about 1,625 km eastward and parallel to tributaries, viz., the 

Nau Chhu, the Tsa Chhu, the Men Chhu, the Charta Tsangpo, the Raga Tsangpo, the Tong 

Chhu, the Shang Chhu, the Gya Chhu, the Giamda Chhu, the Po Tsangpo and the Chindru 

Chhu and the right bank tributaries, viz. the Kubi, the Kyang, the Sakya Trom Chhu, the Rhe 

Chhu, the Rang Chhu, the Nyang Chhu, the Yarlang Chhu, and the Trulung Chhu join the 

river along its uppermost reach. At the extreme eastern end of its course in Tibet the Tsangpo 

suddenly enters a deep narrow gorge at Pe, where in the gorge section the river has a gradient 

ranging from about 4.3 to 16.8 m/km (Fig. 3.1).  

The river enters in India near Tuning in Arunachal Pradesh. After travelling for a 

distance of 278 km up to Kobo, it meets with two rivers the Dibang and the Lohit in Assam 

near Kobo. Below this confluence point, the river is known by the name of the Brahmaputra. 

It passes through Assam into Bangladesh and at last it meets with the Ganga near Goalundo 

4 
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in Bangladesh before joining the Bay of Bengal. Its total length is 2,880 km comprising of 

1,625 km in Tibet, 918 km in India and 337 km in Bangladesh. It is also one of the most 

braided rivers in the world with width variation from 1.2 km at Pandu near Guwahati to about 

18.13 km near Gumi few km distances downstream to this point.  

Traversing through deep narrow gorges of the Himalayan terrain the Tsangpo takes a 

southward turn and enters Indian territory at an elevation of 660 m. The river then enters the 

State of Assam (India) taking two important tributaries the Dibang and the Lohit. At the exit 

of the gorge the slope of the river is only 0.27 m/km. At the head of the valley near Dibrugarh 

the river has a gradient of 0.09-0.17 m/km, which is further reduced to about 0.1 m/km near 

Pandu (Fig. 3.1). The mighty Brahmaputra rolls down the Assam valley from east to west for 

a distance of 640 km up to Bangladesh border (Table 4.1).  

Table 4.1 The Brahmaputra river: Country and Indian state-wise 
break-up of basin area and channel length 

 

Country 
Basin area 

(Km2) 

Channel Length 

(Km) 

I. Tibet (China) 293,000 1,625 

2. Bhutan 45,000 - 

3. India 194,413 918 

 (a) Arunachal Pradesh 81,424 278 

(b) Assam 70,634 640 

(c) Nagaland 10,803 - 

(d) Meghalaya 11,667 - 

(e) Sikkim 7,300 - 

(f) West Bengal 12,585 - 

4. Bangladesh 47,000 337 

 

4.2   LONGITUDINAL SECTION OF THE BRAHMAPUTRA RIVER 

The longitudinal section of the Brahmaputra river from its origin to the outfall 

point is depicted in Fig. 4.1.  
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4.3 THE BRAHMAPUTRA BASIN 

The Brahmaputra basin is confined by the great Himalayan ranges in the North and 

Northeast, Naga-Patkai hills in the East, and Mikir hills and Shillong plateau in the South. 

The Assam valley is the eastern continuation of the Indo-Gangetic plains of the Indian 

subcontinent valley. It is very narrow in the east and gradually expands to the west to nearly 

80 km width, covering an area of about 5,62,704 km2. In this valley, the river itself occupies a 

width of 6 to 12 km in most places. The basin of the river extends from parts of Tibet, Nepal, 

Bangladesh, Northeast India and Bhutan. The state wise distribution within India and the 

country wise distribution of the basin are presented in Table 4.2.  

The Indian part of the basin has a maximum east-west length of about 1,540 km and a 

maximum north-south width of about 682 km along 93° east longitude. The basin is 

characterized by large variations in relief slope, landforms, climate, vegetation and land use. 

The upper basin lying in Tibet (China) and in the eastern Himalayas of Arunachal Pradesh, 

Sikkim and Nagaland comprise mostly mountain ranges and narrow valleys and the channels 

are restricted within steep and narrow valleys in the mountains. In Assam and Meghalaya, the 

basin consists of hills, plateaus and plains covered by forests, tea gardens, agricultural lands 

and built-up areas. In West Bengal also, the basin covers hills and valleys dominated by 

forests, tea gardens, agricultural lands and built-up areas. The lower portion of the basin in 

Bangladesh consists largely of fertile plains and delta regions.  

Fig. 4.1 Longitudinal Profile of the Brahmaputra River (Modified After 
WAPCOS, 1993) 

 

 

Kanglung Kang 
Mansoravar 
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The Brahmaputra basin in India is most generously gifted with a fabulous water 

wealth that accounts for nearly 30% of the total water resources and about 40% of the total 

hydropower potential of the country. However, so far the utilisation of this enormous water 

resources potential of the region is limited. For example, less than 5% of the existing 

hydropower potential, 10% of the irrigation potential and about 4% of the ground water 

potential have so far been harnessed.  

The Brahmaputra river is characterized by high intensity flood which flows during the 

monsoon season, June through September, with an average annual flood discharge of 48,160 

m3/sec (August, 1998 at Pancharatna). The highest flood discharge recorded in the 

Brahmaputra at Pandu (Assam) was of the order of 72,148 m3/sec (in year 1962), which had a 

recurrence interval of 100 years (173). The daily hydrograph of the river at Pandu exhibits 

drastic fluctuations in discharge during the monsoon season, whereas the time series of 

annual maximum flood events for the period 1955-2000 do not indicate any perceptible trend 

(59).  

Analysis of 100-year rainfall records at Guwahati also does not show any distinct long 

term trend (59). However, there is a considerable variation in the spatio-temporal distribution 

of rainfall with marked seasonality. For example, precipitation varies from as low as 120 cm 

in parts of Nagaland to above 600 cm in the southern slopes of the Himalayas. A gradual 

increase in rainfall from the valley bottom towards the lower ranges of the Himalayas, 

followed by a decrease towards the higher ranges is evident from the observed records at 

Dibrugarh (285 cm) in the eastern part of the valley through Pasighat (507 cm) in the foothills 

to Tuting (274 cm) further up in the Himalayas. Monsoon rains from June to September 

accounts for 60-70% of the annual rainfall. These rains that contribute a large portion of the 

runoff in the Brahmaputra and its tributaries are primarily controlled by the position of a belt 

of depressions, called the monsoon trough, extending from northwest India to the head of the 

Bay of Bengal. In the course of the north-south oscillations in summer, when this axis moves 

closer to the foothills of the Himalayas, heavy precipitation occurs in Assam and adjoining 

highlands. The severity of rainstorms occasionally reaches as high as 40 cm per day. The 

years 1998 and 2004 which saw extremely high floods in the region also recorded excessively 

high rainfall, especially in the upper basin areas. Rainfall recorded at Guwahati during the 

monsoon months in 1998, June through September, is 922 mm, while at Dibrugarh it is 2002 

mm and Pasighat in Arunachal Pradesh 4,573 mm accounting for 60%, 67% and 75% of the 

annual rainfall respectively (59). During the flood season, all the districts in Arunachal 
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Pradesh receive rainfall much above the normal rainfall. The intensity of rainfall recorded at 

Dibrugarh on June 28, 1998 is of the order of 17 mm/hr. 

The Brahmaputra basin, especially its monsoon dominated wetter parts, is enormously 

rich in biotic resources with a great diversity of flora and fauna types marked by significant 

variations, both in vertical and horizontal distributions. The forest cover of the basin in India, 

as indicated by recent satellite surveys, is 144,922 km2, which accounts for 59% of the total 

geographical area (Myint and Hofer, 1997). In contrast to this, the total basin forest cover 

including the portion outside India accounts for only 14.07% of the total geographical area of 

the basin. The distribution of forest cover in different states lying within the basin in India is 

estimated as: Arunachal Pradesh (82.8%), Nagaland (68.9%), Meghalaya (63.53%), Sikkim 

(39.52%), West Bengal (21.4%) and Assam (20.56%) (Myint and Hofer, 1997). In fact, 

Arunachal Pradesh accounts for about 60% of the forest cover in the Indian part of the basin.  

The vegetation changes from tropical evergreen and mixed deciduous forest in the 

Assam valley and the foothills, through temperate coniferous belts in the middle Himalayas 

to alpine meadows and steppes in the still higher ranges. There has been considerable decline 

in the forest cover due to deforestation, land use conversion and land degradation in the 

basin. Shifting cultivation, involving traditional slash and burn technique of agriculture which 

is widely being practiced in the hills of northeast India, is a major cause of environmental 

degradation leading to deterioration of forest cover, loss of biodiversity, soil erosion, loss of 

soil fertility and crop yield, reduction in ground water recharge, increase in surface runoff, 

lowering of water table and acceleration in the rates of sedimentation in rivers and reservoirs 

downstream.  

The Brahmaputra basin in northeast India provides a unique habitat for an exquisite 

variety of fauna, some of which belong to the most rare and endangered species. The 

floodplain of the Brahmaputra river in Assam is dotted with a large number of wetlands, 

numbering more than 3,500, which have great significance as unique habitats for exquisite 

varieties of flora and fauna and also as natural flood water retention basins. Degradation and 

destruction of these wetlands have considerable impact on the deteriorating flood hazard 

scenario in the state. 

4.4 THE BRAHMAPUTRA RIVER SYSTEM 

The Brahmaputra river, termed as a moving ocean (173), is an antecedent snow-fed 

large Trans-Himalayan river which flows across the rising young Himalayan range. 
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Considerable variations in width, gradient, discharge and channel pattern occur throughout its 

course. Geologically, the Brahmaputra is the youngest of the major rivers of the world and 

unique in many respects. It happens to be a major river for three countries, viz., China, India 

and Bangladesh. The river basin of the Brahmaputra is bounded on the north by the Kailas 

and Nyen- Chen-TanghIa ranges of mountains; on the east by the Salween river basin and the 

Patkai range running along the Indo-Myanmar border; on the south by the Nepal Himalayas, 

the Naga and Barail ranges and the Meghalaya Plateau; and on the west by the Ganga river 

basin.  

The maximum meridional extent of the basin is 1,540 km along 29°30' N latitude and 

maximum latitudinal extent is 780 km along 90° E longitude. The total length of the river is 

2,880 km (Table 3.1). Several tributaries join the river all along its length. The average 

annual runoff of the Brahmaputra at Pasighat, Pandu and Bahadurabad in Bangladesh is 

186,290,494,357 and 589,000 million cubic metre respectively. The monsoon flow of the 

Brahmaputra at Tesla Dzong in Tibet is 36.27% of the flow at Pasighat (173). 

Throughout its course within India, the Brahmaputra is braided with some well 

defined nodal points where the river width is narrow and restricted within stable banks. All 

along its course in the valley, abandoned wetlands and back swamps are common. The river 

carries about 735 million metric tons of suspended sediment loads annually. 

The Indian section of the Brahmaputra river receives innumerable tributaries flowing 

down the northern, north-eastern and southern hill ranges. The mighty Brahmaputra along 

with the well-knit network of its tributaries controls the geomorphic regime of the entire 

region, especially the Brahmaputra valley. In the north, the principal tributaries are the 

Subansiri, the Jia Bhareli, the Dhansiri, the Puthimari, the Pagladiya, the Manas and the 

Champamati. Amongst these, the Subansiri, the Jia Bhareli and the Manas are the Trans-

Himalayan rivers. The principal south bank tributaries are the Burhi Dehing, the Disang, the 

Dikhow, the Dhansiri (south), the Kopili and the Krishnai. Hydrological characteristics of 18 

important north bank tributaries and 10 important south bank tributaries are presented in 

Table 4.2. 

It is observed that three Trans-Himalayan tributaries, the Subansiri, the Jia Bhareli 

and the Manas on the north have a basin more than 10,000 km2, i.e., only two south bank 

tributaries namely the Dhansiri and the Kopili form a basin area more than 10,000 km2. The 

Manas river combined with the Aie and the Beki rivers drains biggest area of 41, 350 km2. 
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The 442 km long Subansiri river and the 360 km long Burhi Dehing river are considered 

longest, respectively, among the north-bank and south bank tributaries (Water Year book, 

CWC, 2002). In terms of the average annual discharge, the Subansiri carries a discharge of 

755,771 m3/sec, which ranks first among all the important tributaries. The Jia Bhareli and the 

Manas in the north carrying an average annual suspended sediment load of 2,013 ha.m and 

2,166 ha.m, respectively, are the leading rivers in the case of sediment discharge (59). Of all 

the north and south bank tributaries, as many as fourteen have sediment yields in excess of 

500 tons/ km2/year, the highest being 4,721 tons/km2 /year.  

4.5 THE TRIBUTARIES OF THE BRAHMAPUTRA RIVER 

In the past, the Dibang and the Lohit, two major rivers joined the Dihang a short 

distance upstream of Kobo to form the Brahmaputra. Now, the situation has undergone a 

radical change. Dibang and Lohit joined Dihang through another channel Dibru, developed 

through phenomenon river avulsion. Dibru is receiving major part of the discharge of Lohit 

for the last few years. The river receives numerous tributaries from both sides all along its 

course, thereby progressively growing in its size. Some of the tributaries are trans-Himalayan 

rivers with considerable discharges. In the north, the principal tributaries are the Subansiri, 

the Jia Bhareli, the Dhansiri (north), the Puthimari, the Pagladiya, the Manas, the 

Champamati. On the south bank the main tributaries are the Burhi Dehing, the Disang, the 

Dikhow, the Dhansiri (south) and the Kopili. The Brahmaputra also has some important 

tributaries, like the Teesta, the Jaldhaka, the Torsa, the Kaljani and the Raidak flowing 

through North Bengal. 

The important tributaries on both the north and the south bank of Brahmaputra are 

listed in Table 4.3 along with chainage in km of their present outfalls from Indo Bangladesh 

border. The position of the outfall changes whenever bank erosion takes place there. Besides 

these tributaries, there are many other small streams which drain directly into the river.  

Certain fluvio-geomorphic features which are found in the Brahmaputra basin have a 

significant bearing on the characteristics of the north and south bank tributaries. The 

variations in environmental settings, including geology, geomorphology, physiography, 

relief, precipitation and soils of the two regions belonging to the north bank and south bank 

river basins bring about notable differences between these two groups of rivers. On the north, 

the rainfall is heavier and the hills are less stable and more liable to soil erosion and 

landslides. In consequence, the north bank tributaries carry larger silt charge. The 
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characteristics of north bank and south bank tributaries (173) reveal the following points of 

differences -  

4.5.1 The North Bank Tributaries  

(i) The north bank tributaries have higher rainfall and pass through the Himalayan 

reaches with steep channel gradient.  

(ii) In case of northern tributaries, the long section of river course is in the hilly terrain 

while the small section is in the plains.  

(iii) The northern tributaries carry an enormous sediment load as compared to the 

southern tributaries. On an average, the sediment yield of the north-bank 

tributaries is three times higher than that of the south bank tributaries coming out 

of the Naga, Mikir hills and the Meghalaya plateau (173). 

(iv) Due to steep slope and heavy sediment load, these streams are braided over major 

portion of their travel. These have shallow braided channels for a considerable 

distance from the foot of the hill and in some cases right up to the outfall.  

(v) The northern tributaries have generally coarse sandy beds with occasional gravel 

beds up to some distance from the foothills.  

(vi) These tributaries generally have flashy floods.  

(vii)   The basins of all the north bank tributaries have hypsometric curves with a 

plateau indicating a relatively youthful stage in their development.  

(viii) The north bank tributaries show a general parallel drainage pattern. 

(ix) The northern tributaries have shallow braided channels.  

(x) The northern tributaries are characterized by frequent shifting of their channels 

during floods. As revealed by the study, the northern tributaries have peculiar 

channel shifting patterns. The Subansiri and all other eastern rivers shift their 

channels westward, while the rivers between the Pagladiya and Subansiri shift 

eastwards. Again from the Manas up to the river Sonkosh in the west, all the 

rivers migrate westward. 

4.5.2 The South Bank Tributaries 

(i) These tributaries have comparatively flatter gradient and deep meandering 

channels almost from the foot hills.  

(ii) The southern tributaries have beds & banks composed of fine alluvial soils.  

(iii) The southern tributaries have their long courses over the plains. 

(iv) These tributaries have comparatively less silt charge with finer fractions.  
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(v)  In contrary to the north bank basins, the basins of the tributaries from the south 

bank indicate much mature stage with hypsometric curves showing a continuously 

decreasing profile. 

(vi) The south bank tributaries while keeping the parallel drainage pattern, show signs 

of dendritic configuration. 

(vii)  The southern tributaries change their courses less frequently. 

(viii) The southern ones have their meandering channels over the plains. 

4.6  HYDROLOGICAL CHARACTERISTICS OF SOME MAJOR TRIBUTARIES 

The hydrological characteristics such as basin area, length, average annual discharge, 

average annual suspended load and the sediment yield of some major tributaries are outlined 

in Table 3.2 (173).  

 

Table 4.2 Hydrological characteristics of some major tributaries 

 

Tributaries Basin Area 
(Km2) 

Length 
(Km) 

Average 
annual 

discharge 
(m3/sec) 

Average 
annual 

suspended 
load 

(ha. m) 
 

Sediment 
yield 

(ton/ Km2 
/year) 

Northern Tributaries 

 
     

1. Subansiri 28,000 442 755,771 992 959 

2. Ranganadi 2,941 150 74,309 186 1,598 

3. Burai 791 64 20,800 16 529 

4. Bargang 550 42 16,000 27 1,749 

5. Jia Bhareli 11,716 247 349,487 2013 4721 

6. Gabhru 577 61 8450 11 520 

7. Belsiri 751 110 9300 9 477 

8. Dhansiri (North) 1,657 123 26,577 29 463 

9. Noa Nadi 907 75 4450 6 166 

10. Nanoi 860 105 10,281 5 228 

11. Bamadi 739 112 5756 9 323 

12. Puthimari 1,787 190 26,324 195 2,887 
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13. Pagladiya 1674 197 15201 27 1,883 

14. Manas-Aie-Beki 41,350 215 307,947 2,166 1,581 

15. Champamati 1,038 135 32,548 13 386 

16. Gaurang 1379 98 22,263 26 506 

17. Tipkai 1,364 108 61,786 31 598 

18. Gadadhar 610 50 7,000 0.21 272 

Southern Tributaries      

I. Burhi Dehing 8,730 360 1411,539 210 1,129 

2. Disang 3,950 230 55,101 93 622 

3. Dikhow 3,610 200 41,892 34 252 

4. Jhanzi 1,130 108 8,797 16 366 

5. Bhogdoi 920 160. 6072 15 639 

6. Dhansiri (South) 10,242 352 68,746 147 379 

7. Kopili 13,556 297 90,046 118 230 

8. Kulsi 400 93 11,643 0.6 135 

9. Krishnai 1,615 81 22,452 10 131 

10. Jinari 594 60 7,783 3 96 

 

Table 4.3 Tributary distances measured from Indo-Bangladesh border 

(Along the upstream) (WAPCOS, 1993) 

Sl. No North Bank Tributaries Chainage in km. 

1.  Simen 580 

2.  Jiyadhol 540 

3.  Subansiri 430 

4.  Burai 392 

5.  Bargang 382 

6.  Jia Bhareli 338 

7.  Gabhru 300 

8.  Belsiri 280 

9.  Dhansiri 270 

10.  Noa Nadi 230 

11.  Nanai Nadi 215 
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12.  Bar Nadi 205 

13.  Puthimari 172 

14.  Pagladiya 170 

15.  Beki 115 

16.  Manas 85 

17.  Champamati 63 

18.  Gaurang 43 

19.  Tipkai 40 

20.  Sankosh 0 

 Sl. No South Bank Tributaries Change in km 

1.  Dibru 592 

2.  Burhi Dehing 540 

3.  Disang 515 

4.  Dikhow 505 

5.  Jhanzi 495 

6.  Dhansiri (south) 420 

7.  Kopili 220 

8.  Kulsi 140 

9.  Deosila 130 

10.  Dudhnai 108 

11.  Krishai 107 

12.  Jinari 100 

13.  Jinjiram 0 

 

4.7 HYDROLOGIC AND PHYSIOGRAPHIC CHARACTERISTICS OF THE 

BRAHMAPUTRA RIVER 

The hydraulic characteristics describing the average annual runoff of the Brahmaputra 

and its major tributaries are represented in Fig. 3.2 a schematic diagram. The statistical details 

of the river are described below: 

(a) Total basin area from its source to its confluence with Ganga at Goalundo  

in Bangladesh       580,000 km2 
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(i) Basin area within Tibet      293,000 km2 

(ii) Basin area in Bhutan and India     240,000 km2 

(iii)  Basin area in Bangladesh       47,000 km2 

(b) Length from its source to outfall in Bay of Bengal   2,880 km 

(i) Length within Tibet     1,625 km 

(ii) Length within India      918 km  

(iii) Length within Bangladesh     337 km 

(c) Gradient  

(i) Reach within Tibet      1 in 385 

(ii) Reach between Indo-China border and Kobo in India 1 in 515 

(iii) Reach between Kobo and Dhubri    1 in 6,990  

(iv) Reach within Bangladesh First 60 km from Indian Border                                                                             

1 in 11,340 

Next 100 km stretch     1 in 12,360 

Next 90 km stretch     1 in 37,700 

(d)  Observed discharge 

(i) Maximum observed discharge at Pandu (on 23.8.1962) 72,727 m3/sec 

(ii) Minimum observed discharge at Pandu (on 20.2.1968) 1,757 m3/sec 

Average dry season discharge at Pandu    4,420 m3/sec 

(e) Normal annual rainfall within basin ranges between 2,125 mm in Kamrup  

district of Assam and 4,142 mm in Tirap district of Arunachal Pradesh.  
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Fig. 4.2 Average Annual Runoff of the Brahmaputra and its Tributaries 

 

High variability in discharge of the river is mainly caused by seasonal rhythm of the 

monsoon and the freeze-thaw cycle of the Himalayan snow. As regards the pattern of 

sediment transport, the river has the record of carrying excessive sediment load which is 

believed to be one of the important factors responsible for braiding. 

 

4.8 THE STUDY AREA 

In the present study, For the rating curve modelling, three gauging sites, two on the 

main stem of the brahmaputra River, namely Pandu and Panchratna and one at the outlet of 

the biggest northern tributary (Subansiri River), namely, Choulduaghat have been considered. 

For rainfall-runoff and sediment runoff modelling in a sub basin, the Subansiri River basin 

has been taken up a the study area (Fig. 4.3).  
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Fig. 4.3: Study Area 

 

4.8.1 Rainfall in Subansiri River 

 

Major portion of rainfall in Arunachal Pradesh occurs in monsoon season of June to 

September and heavy precipitation is generally limited to South-Western parts. The southern 

part receives a seasonal rainfall of 50mm to 3000mm. The average annual rainfall of 

subansiri basin is 2150 mm. 

 

4.8.2 Stream-flow and River Gauges on Subansiri  

 

River gauges have been establised since 1956 on Subansiri River system. There are at present 

four gauge stations. Daily flow at Choulduaghat and at lower Subansiri dam site are available 

from 1956 and 1977 respectively. The data of Choulduaghat are pertinent to this study. 
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4.8.3 Sediment Load in Subansiri Basin 

 

The sub-Himalayan range of Subansisri generally consists of soft sandstones and 

weathered rocks. Land formation of the catchment having steep slope and shallow braided 

channels, therefore, carries heavy charge of coarse sediment particles of sizes 0.2 mm dia 

upto 2 mm dia in suspension. 

Due to granulometric characteristics of the soils present in this river basin, their 

density of deposition and coverage is guided by the energy potentialities of the flood volume 

based on the runoff. As the precipitation is intensive during the period May to October and 

the grade of flowing surface being a steep one, sediment deposits at areas nearer to and along 

the foot hills are heavier materials and debris such as boulders and shingles and towards the 

lower portions of the catchment they are of porous detritus materials such as fine sands and 

silt. 

Daily suspended sediment load data at Choulduaghat site is available from 1974 

onwards. 

 

4.9 DATA USED 

 

• Hydrological data: Daily stage, discharge and sediment concentration at Pandu, 

Panchratna and Choulduaghat for 10 years from 1997 to 2006 

 

• Meteorologcal data: Daily rainfall at Daporizo, Ziro, Bomdilla, Bhalukpong, 

Choulduaghat, Badatighat, North Lakhimpur for three years from 2003-2005. Daily 

average temperature at one grid point within the Subaasiri basin for three years from 

2003-2005. 
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Methodology 

 

In recent years ANNs have shown exceptional performance as regression tools, 

especially when used for pattern recognition and function estimation.  They are highly non-

linear, and can capture complex interactions among the input variables in a system without 

any prior knowledge about the nature of these interactions (Hammerstrom, 1993).  The main 

advantage of ANNs is that one does not have to explicitly assume a model form, which is a 

prerequisite in conventional modeling approaches. Indeed, in ANNs the data points 

themselves generate a relationship of possibly complicated or orthodox shape.  In comparison 

to the conventional methods, ANNs tolerate imprecise or incomplete data, approximate 

results, and are less vulnerable to outliers (Haykin, 1994). They are highly parallel i.e. their 

numerous independent operations can be executed simultaneously. Although application of 

ANN approach in water resources is recent and limited, it has already produced very 

encouraging results. 

In the present study, various ANN models have been developed for simulating the 

sediment concentration of the Pranhita sub-basin at six gauging sites. In this chapter, the 

methodology of ANN models development has been described. First various aspects of ANN 

modeling are discussed. Then some salient features of the software used are described and 

then the steps followed for the implementation of the ANN sediment concentration models 

using the software are given. 

5.1. VARIOUS ASPECTS OF ANN MODELING 

There are no fixed rules for developing an ANN, even though a general framework 

can be followed based on previous successful applications in engineering.  

Some issues that typically arise while developing an ANN are briefly described in this 

section. 

5.1.1. Selection of Input and Output Variables 

The goal of an ANN is to generalize a relationship of the form 

 

Ym  =  f(Xn)                                                                                                             …(5.1) 

5 
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Where Xn is an n-dimensional input vector consisting of variables x1,…........  xi, ............. xn ; and 

Ym is an m-dimensional output vector consisting of resulting variables of interest       y1 , 

…..….. yi, ……....ym. We use the term “generalize” to imply that the functional form of f(.) 

in Eq. 6.1 to Eq.6.6 will not be revealed explicitly, but will be represented by the network 

parameters. In hydrology, the values of xi can be causal variables such as rainfall, 

temperature, previous flows, water levels, spatial locations, evaporation, basin area, 

elevation, slopes, pump operating status, contaminant loads, meteorological data, and so on. 

The values of yi can be hydrological responses such as runoff, streamflow, ordinates of a 

hydrograph, optimal pumping patterns, rain fields, hydraulic conductivities, contaminant 

concentrations, and others. 

The selection of an appropriate input vector that will allow an ANN to successfully 

map to the desired output vector is not a trivial task. Unlike physically based models, the sets 

of variables that influence the system are not known a priori. In this sense of nonlinear 

process identification, an ANN should not be considered as a mere black box. A firm 

understanding of the hydrologic system under consideration is an important prerequisite for 

successful application of ANNs. For instance physical insight into the problem being studied 

can lead to better choice of input variables for proper mapping. This will help in avoid loss of 

information that may result if key input variables are omitted, and also prevent inclusion of 

spurious inputs that tend to confuse the training process. A sensitivity analysis can be used to 

determine the relative importance of a variable (Maier and Dandy 1996) when sufficient data 

is available. The input variables that do not have a significant effect on the performance of an 

ANN can be trimmed from the input vector, resulting in a more compact network. 

5.1.2. Collecting and Preprocessing Data 

Most hydrologic data are obtained from gauges that are placed on site or through 

remote sensing instruments. Also, either an existing or laboratory experiments can be used to 

generate the data patterns for specific applications (French et al. 1992; Ranjithan et al. 1993; 

Rogers and Dowla 1994; Smith and Eli 1995; Minns and Hall 1996). Again, there appears to 

be no fixed method for determining the number of input-output data pairs that will be 

required. To ensure a good approximation, Carpenter and Barthelemy (1994) stated that the 

number of data pairs used for training should be equal to or greater than the number of data 

parameters (weights) in the network. An optimal data set should be representative of the 

probable occurrence of an input vector and should facilitate the mapping of the underlying 
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nonlinear process. Inclusion of unnecessary patterns could slow network learning. In contrast, 

an insufficient data set could lead to poor learning. This makes it useful to analyze and 

preprocess the data before it is used for ANN application. Routine procedures such as 

plotting and examining the statistics are sometimes effective in judging the reliability of the 

data and possibly to remove outliers. In many cases, the data needs to be encoded, 

normalized, or transformed before being applied to an ANN. 

 

5.1.3. Designing the ANN 

This is important step, involves the determination of the ANN architecture and 

selection of a training algorithm. An optimal architecture may be considered the one, yielding 

the best performance in terms of error minimization, while retaining a simple and compact 

structure. No unified theory exists for determination of such an optimal ANN architecture. 

Often, more than one ANN can generate similar results. The numbers of input and output 

nodes are problems dependent. They are equal to n and m in Eq. 5.1, the flexibility lies in 

selecting the number of hidden layers and in assigning the number of nodes to each of these 

layers. A trail-and-error procedure is generally applied to decide on the optimal architecture. 

As discussed earlier, the cascade-correlation-training algorithm is an efficient method to find 

the optimal architecture.  

The potential of feed-forward neural networks can be attributed to three main factors 

(Kothari and Agyepong 1996): (1) multilayered feedforward neural networks do not need an 

explicit mathematical equation relating inputs and outputs; (2) a feedforward network with a 

single hidden layer with an arbitrary number of sigmoidal hidden nodes can approximate any 

continuous function; and (3) a feedforward network with a single hidden layer of ‘m’ 

sigmoidal nodes achieves an integrated squared error of O(1/m) while a linear combination of 

a set of ‘m’ fixed basis functions achieves an integrated squared error of O(1/m2/d), where ‘d’ 

is the dimension of the input (Barron 1993). Points 1 and 3 above refer to computational 

superiority of feedforward ANN, while 2 hints to an existence theorem that establishes the 

capabilities of a feedforward ANN. It does not, however, allow for a systematic 

determination of the number of hidden nodes to use in a given situation. The number of 

hidden layer neurons significantly influences the performance of a network; with too few 

nodes the network will approximate poorly, while with too many nodes it will overfit the 

training data. 

 The influence of the size of a neural network on its generalization performance is 

well known (Baum and Haussler 1989; Kothari and 1997 Agyepong). Bishop (1995) provides 
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an excellent review of proposed approaches that allow the determination of network 

architecture with acceptable performance on the training and generalization data. Some of the 

popular techniques include network growing (e.g., Gallant 1986; Nadal 1989; Fahlman and 

Lebiere 1991; Bose and Garga 1993; Kwok and Yeung 1995) and network pruning (e.g., 

Mozer and Smolensky 1989; Karnin 1990; LeCun et al. 1990; Hassibi and Stork 1993; Reed 

1993). These algorithms treat the network structure as an optimization parameter along with 

the weights. Pruning algorithms generally start with a large network and proceed by 

removing weights to which sensitivity of the error is minimal. Growing methods, on the other 

hand, typically start with a small network and add nodes with full connectivity to nodes in the 

existing network when a suitably chosen measure (e.g., entropy, covariance, etc.) stops 

decreasing. An alternative to these methods is called soft weight sharing (Nowlan and 

Hinton, 1992), where groups of weights are encouraged to have equal values, allowing for a 

reduction in the effective number of free parameters in the network. Soft weight sharing can 

train a large network with a small amount of training data (Agyepong and Kothari 1997); 

however, to ensure convergence to good solutions, proper initialization of the weights is 

necessary. 

5.1.4. Training and Cross Training 

This is similar to the idea of calibration that is an integral part of most hydrologic 

modeling studies. The available data set is generally partitioned into three parts for training, 

cross training, and validation. The purpose of training is to determine the set of connection 

weights and nodal thresholds that cause the ANN to estimate outputs that are sufficiently 

close to target values. The dataset reserved for training is used to achieve this goal. This 

fraction of the complete data to be employed for training should contain sufficient patterns so 

that the network can mimic the underlying relationship between input and output variables 

adequately. The weights and threshold values are assigned small random values initially 

(usually, -0.3 ~ 0.3). During training, these are adjusted based on the error, or the difference 

between ANN output and the target responses. This adjustment can be continued recursively 

until a weight pace is found, which results in the smallest overall prediction error. However, 

there is the danger of overtraining a network in this fashion, also referred as over fitting. This 

happens when the network parameters are too fine-tuned to the training data set.   

It is as if the network, in the process of trying to “learn” the underlying rule, has 

started trying to fit the noise component of the data as well.  In other words, overtraining 

results in a network that memorizes the individual examples, rather than trends in the data set 
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as a whole.  When this happens, the network performs very well over the data set used for 

training, but shows poor predictive capabilities when supplied with data other than the 

training patterns.  To prevent this kind of over fitting, a cross training procedure is usually 

recommended.  The goal of this procedure is to stop training when the network begins to 

overtrain.  The second portion of the data is reserved for this purpose. After the adjustment of 

network parameters with each epoch, the network is used to find the error for this data set. 

Initially, errors for both the training and cross training data sets go down. After                                            

an optimal amount of training has been achieved, the errors for training set continue to 

decrease, but those associated with the cross training data set begin to rise. This is indication 

that furthers training will likely result in the network over fitting the training data. The 

process of training is stopped at this time, and the current set of weights and thresholds are 

assumed to be the optimal values. The network is  ready  for  use  as  a  predictive tool.  If  

the available data set is too small for partitioning, the simplest way to prevent overtraining is 

to stop training when the mean square error ceases to decrease significantly. 

5.1.5. Model Validation 

Similar to other modeling approaches in hydrology, the performance of a trained 

ANN can be fairly evaluated by subjecting it to new patterns that it has not seen during 

training. The performance of the network can be determined by computing the percentage 

error between predicted and desired values. In addition, plotting the model output versus 

desired response could also be used to assess ANN performance. Since finding optimal 

network parameters is essentially a minimization process, it is advisable to repeat the training 

and validation processes several times to ensure that satisfactory results have been obtained. 

 

5.2. FEATURES OF ANN SOFTWARE - NEURAL POWER 

The ANN software used in this study is Neural Power. Neural Power is an easy-to-use 

powerful Artificial Neural Network (ANN) program. With its user friendly interface, simple 

operation and highly efficient performance, most of general ANN problems can be handled 

with great results.  Neural Power can be applied in following fields: multi-nonlinear 

regression, forecasting, curve fitting, pattern recognition, classification, decision making, 

problem optimization and time series analysis. 
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5.2.1. Neural Power is Suitable for: 

♦ People who have to work or analyze data in any form. 

♦ People working on problems that are complexes, laborious, ‘fuzzy’ or simply un-

resolvable using present methods. 

♦ People who simply want to improve on their current techniques and gain competitive 

advantage. 

 

5.2.2. Features of Neural Power 

 

♦ Multi-learning data files supported: almost all other similar software only one data file for 

the learning process. Sometimes, this is a not enough for a real problem. 

♦ Normal and grid data types supported: no other software supports “grid” data type 

learning. 

♦ Visual and real time monitoring of learning process. Almost all aspects of network can be 

controlled in graphical mode, i.e. use any connection weight, and variations of RMSE. 

♦ Visual design of network structures. 

♦ Step-by-step learning. 

♦ Support interrupting/suspending and resuming of learning process. Learning can start 

from a set of random weights specified by a user. 

♦ Genetic Algorithms can be used as one of the learning algorithms. 

♦ No limitation on hidden layer numbers and node number for each layer. Each layer can 

have different transfer functions. 

♦ Includes six types of the most-often used transfer functions, in addition, customers can 

define functions of their own. 

♦ Fast convergence of learning. 

♦ Easy settlement for time series analysis. 

♦ Abilities for optimal study and 2D-3D graphical analysis. 

♦ Excel-like, multi-window data file editor enhanced by VB, Java and Delphi/Pascal script 

languages. 

♦ Many very useful data analysis tools beyond neural network: create data chart,     2-D, 3-

D function chart, curve fit with over 30 pre-defined functions, function/equation fit and 

equation solve. 
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5.2.3. System Requirements 

Running the 32-bit version of Neural Power requires a minimum 486 processor and 

Window 95/98/2000/ME/XP or NT 4.0. A complete installation requires about 10 MB of 

hard disk space. 64 MB or high RAM is recommended. 

There are three main procedures: “Data Files”, “Learning/Training” and 

“Applications” for being selected.  The Data file editor provides a spreadsheet-like tool for 

easy pre-and post-processing of data. In addition, many extra jobs can be performed here 

also, i.e. charting, regression. 

The Excel-style data file editor is mainly used for creating new or viewing/editing 

existed data files. Such data files will be used for either the learning/training process or for 

applications later. “InputSheet” is especially for input data entry of learning data; while 

“OutputSheet” is for output data corresponded. “ChartStore” is for chart store, view and edit. 

The chart can be created with the data either from input data or output data, or copy from 

result charts of Learning or Application procedures. 

 

5.2.4. File Format 

♦ Neural Power data file (.ogy): any numerical data or strings may be contained. However, 

if this file to be used for learning later, be sure no string data is contained within the file 

except for the column title. For string data, represent them by real values, for example, 

“1” for “True” and “0” for “False”. 

♦ Excel file (.xls): Read/save MS Excel data file directly, without OLE linker. Data values 

only, all other information will be ignored. If there are more than two worksheets in “xls” 

file, only first two will be inputted. 

♦ Lotus 1-2-3 file (.wks, .wk1) and Quattro Pro file (.wq1): Direct read without OLE. 

♦ Comma-delimited text file (.csv, .txt): Save and load most general data file format. 

Reading data with separate of tab space, space, “.”, and “,” automatically; while saving 

data with separate of “,”. 

♦ Dbase file (.dbf): Save and load popular desktop database directly. 

♦ MS Access file (.mdb): Save and load another popular desktop database files through 

DAO. 

♦ Neural Power network file (.par): Load Neural Power network file for viewing connection 

weight. 
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5.2.5. Learning/Training 

The learning/training process shows that the free parameters of a neural network are 

adapted through observed data (data file). The objective is to obtain “Network Weights File” 

which will be used for “Application” later. 

To start “learning”, one needs to load one or more data files (.ogy) initially. Multi-

files are allowed in the meantime, if they are all for the same problem and have similar data 

structures. The files with “checked” will be used for learning; while, “Not checked” files are 

for testing/verification. 

Data types are classified into two catalogs: “Normal Type” and “Grid Type”: 

♦ Normal type: one pattern consists of the data placed in any row of the output sheet that 

correspond to the data in some row of input sheet. Within a data file, the pattern number 

is the same as the row number, and the row number in the output sheet must be identical 

with that in input sheet. If using a different data file and the same question, however, the 

row number can be various. 

♦ Grid Type: all input data and output data in one file are considered as one pattern. Row 

numbers are not necessary identical between input and output. However the row and 

column number should be matched for different data file correspondence within the same 

problem, e.g. in input and output, respectively. 

 

5.2.6. Learning Algorithm 

There are five learning algorithm supported in Neural Power currently: 

1. Incremental Back Propagation (IBP): the network weights are updated after presenting 

each pattern from the learning data set, rather than once per iteration. This is referred to as 

Standard Back Propagation, and is the most preferred algorithm for large data sets. 

2. Batch Back Propagation (BBP): the network weights update takes place once per 

iteration, while all learning data pattern are processed through the network. 

3. Quick Propagation (QP): Quick propagation is a heuristic modification of the back 

propagation algorithm. It’s proved to be much faster than standard back-propagation for 

many problems. 

4. Genetic Algorithm (GA): Genetic algorithm is employed to find optimal connections 

weights. 

5. Levenberg-Marquardt Algorithm. 
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5.2.7. Connection Types 

Two kinds of connections are in existence: 

Multilayer normal feed-forward: A Multilayer Feed forward network consists of one or 

more layers. Each layer receives an input vector, which is either the external input vector or 

the output vector of the prior layer. The layers are placed in a linear order, so that the input to 

the first layer is the external input, the input to the second layer, if it exists, is the output of 

the first layer, and so on, with layers 2,3,…, receiving their inputs from the previous layer. 

The last layer in the sequence is the output layer; its output vector represents the network 

output. Every other layer besides the output layer is referred to as a “hidden” layer, because 

their activation is not externally visible. This is most commonly used and is generally 

recommended for most of the applications. 

  

Multilayer full feed-forward: The Multilayer Full Feed Forward architecture is similar to 

Multilayer Normal Feed forward, expect for two differences. First, each layer is provided 

with the external input. Second, each layer receives input from every layer below it in the 

linear ordering. For example, if the network has 3 layers, the first one receives the input 

vector, as usual. The second one receives an input vector that is the concatenation of the input 

vector and the output of the first layer. The third layer receives inputs from the input vector, 

and the output vectors of both prior layers.  

 

5.2.8. Transfer Functions 

The transfer function denoted by ξ (µk), defines the output of a neuron in terms of the 

activity level at its input. Six commonly used functions are predefined as below: 

 

♦ The Sigmoid function, ranged from 0 to 1, is defined as: 

       ξ (µk) = 1/[1+exp(-aµk)] 

♦ The Hyberbolic Tanh function, ranged from –1 to 1, is defined by: 

        ξ (µk) = [1-exp(-aµk)]/[1+exp(-aµk)] 

♦ The Gaussian function, ranged from 0 to 1, defined as:       

ξ (µk) = e(-a.µ2)2 

♦ The Linear function: ranged from -α to +α: 

      ξ (µk) = a.µk 

♦ The Threshold Linear function: ranged from 0 to +1: 



 87 

      ξ (µk) = 0 if µk < 0 

       ξ (µk) = 1 if µk > 1 

       ξ (µk) = aµk if 0 <= µk <=1 

♦ The Bipolar Linear function: ranged from –1 to +1: 

     ξ (µk) = -1 if µk < -1 

      ξ (µk) = 1 if µk > 1 

      ξ (µk) = α 'µk if -1 <= µk <=1 

where, α ' is a parameter called “slope” of transfer functions. 

 

5.2.9. Weight Editor 

Default, connection weights will be started from random values. However, may be 

started learning with specified weight values by utilizing the weights editor. 

 

5.2.10. Learning Parameters 

In the “settlements” section, one can set parameters such as learning rate, momentum, 

screen update rate and stop criteria. All of those parameters may be modified at any time 

during learning. 

5.2.11. Applications 

In the application module, the network file (.par) obtained through the learning 

progress will be used for further analysis: 

♦ Query/Forecasting 

♦ Optimize analysis 

♦ 2-D and 3-D analysis 

♦ Error surface analysis 

♦ Importance analysis 

Before carrying out above analysis, a network file (.par) must be loaded firstly. 

Forecasting or verification can easily be done here. The data values can be either inputted 

directly or loaded from a data file. In the situation where the time series items are included in 

the output data series (recorded in Network file), and if you have input data values directly, 

the initial data must be inputted corresponding to the output items that contain the time series.  

 During the learning process, will be seen the observed data (red line) vs. calculated 

data (green line) for all output variables as the learning progresses. 
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5.3. DEVELOPMENT OF REGRESSION AND ANN MODELS FOR STAGE-
DISCHARGE AND SEDIMENT-DISCHARGE CURVES IN BRAHMAPUTRA 
BASIN 

5.3.1. Input Variables 

The selection of training data that represents the characteristics of a catchment and 

meteorological patterns is extremely important in modeling. The training data should be large 

enough to contain the characteristics of the watershed and to accommodate the requirements 

of the ANN architecture. If the information included in the training data set is insufficient, an 

increase in the complexity of a network (i.e., an increase in the number of neurons or layers 

in a network) will not enable the network to generalize the patterns in the physical 

phenomena. To the contrary, an increase in the complexity of the models might mislead the 

modeler to overfit the training data and lead to poor forecasts (Tokar and Johnson, 1999). 

The error back propagation ANN models used in the present study are basically static-

feedforward ANNs, the most widely used ANN structures, but they lack feedback 

connections to effectively remember and handle the previous states of information. One way 

that information can be introduced in static-feedforward ANNs is to input a time delay 

pattern that constitutes the tapped delay line information. Therefore, this network must 

determine the input variables, output variables and the lag time of the basin before 

constructing rainfall-runoff-sediment processes in order to increase its accuracy. In general, 

the selection of input variables and output variables is problem dependent. The appropriate 

input variables will allow the network to successfully map to the desired output and avoid 

loss of important information. In the present study, the input dimensions are determined by 

the input variables and the lag time. 

5.3.1.1  Input variables for stage-discharge regression and ANN models 

The daily data of stage and discharge were available at the sites, namely Pandu (main 

Brahmaputra River), Panchratna (main Brahmaputra River) and Choulduaghat (Subansiri 

River) for ten years from January 1997 to December 2006. Out of this, six years data were 

used for training, two years data for testing and two years data for validation.  

The output from the model is the discharge at time step t, Qt. It has been shown by 

many authors that the current discharge can be mapped better by considering, in addition to 

the current value of stage, the discharge and stage at the previous times. Therefore, in 

addition to Ht, i.e., stage at time step t, other variables such as Ht, Ht-1 , Ht-2 , Qt-1 , Qt-2  were 
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also considered in the input. Various combinations of input data considered for training of 

ANN in the present study are given in Table 5.1. However, the input-output variables of 

ANNH-1 have been used for the conventional sediment rating curve analysis. 

Table 5.1 Various ANN stage-discharge Models 

ANN  

Model 

Input  

Variables 

Output Variables 

ANNH-1 Ht Qt 
ANNH-2 Ht, Ht-1, Qt-1 Qt 
ANNH-3 Ht, Ht-1, Ht-2, Qt-1, Qt-2  Qt 
ANNH-4 Ht, Ht-1, Ht-2, Ht-3, Qt-1, Qt-2, Qt-3 Qt 
ANNH-5 Ht, Ht-1, Ht-2, Ht-3, Ht-4,  

Qt-1, Qt-2, Qt-3, Qt-4 
Qt 

    Where Q=Discharge, H=Stage 

 

5.3.1.2  Input variables for runoff-sediment regression and ANN models 

The daily data of discharge and sediment concentration were available at the sites 

namely, Pandu (main Brahmaputra River), Panchratna (main Brahmaputra River) and 

Choulduaghat (Subansiri River) for ten years from January 1997 to December 2006. Out of 

this, six years data were used for training, two years data for testing and two years data for 

validation.  

The output from the model is the sediment concentration at time step t, St . It has been 

shown by many authors that the current sediment concentration can bemapped better by 

considering, in addition to the current value of discharge, the sediment and discharge at the 

previous times. Therefore, in addition to Qt , i.e., discharge at time step t, other variables such 

as Qt-1 , Qt-2 , and St-1 , St-2 , were also considered in the input. Various combinations of input 

data considered for training of ANN in the present study are given in Table 5.2. However, the 

input-output variables of ANNS-1 have been used for the conventional sediment rating curve 

analysis. 
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Table 5.2 Various ANN Runoff-Sediment Models 

ANN  

Model 

  Input  

Variables 

Output Variables 

ANNS-1 Qt St 

ANNS-2 Qt, Qt-1, St-1 St 

ANNS-3 Qt, Qt-1, Qt-2, St-1, St-2 St 

ANNS-4 Qt, Qt-1, Qt-2, Qt-3, St-1 St-2, St-3 St 

ANNS-5 Qt, Qt-1, Qt-2, Qt-3, Qt-4 St-1, St-2, 

St-3, St-4 

St 

 

    Where Q=Discharge, S=Sediment Concentration 

5.3.2. Regression Models Using Conventional Techniques 

Regression models have been developed for runoff-sediment modeling. Sediment 

rating curve analysis has been carried out for the six sites. These models have been 

calibrated, using six years data and then validated with two year data and again cross 

validated with remaining two+86 year data.   

 

 

5.3.2.1 Rating curves for stage-discharge and runoff-sediment modeling 

Rating curves are widely used to estimate the discharge vis-à-vis sediment load being 

transported by a river. A rating curve is a relation between the sediment and river discharge. 

Rating curves may be plotted showing average discharge/sediment concentration or load as a 

function of stage/discharge averaged over daily, monthly, or other time periods. Rating 

curves are developed on the premise that a stable relationship between discharge/sediment 

concentration and stage/discharge can be developed which, although exhibiting scatter, will 

allow the mean discharge/sediment yield to be determined on the basis of the stage/discharge 

history. A problem inherent in the rating curve technique is the high degree of scatter, which 

may be reduced but not eliminated. Discharge/Sediment Concentration does not necessarily 

increase as a function of satge/discharge. 

Mathematically, a rating curve may be constructed by log-transforming all data and 

using a linear least square regression to determine the line of best fit. The log-log relationship 
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between Discharge(Q)/Sediment load (S) and Stage(H)/Discharge(Q) is of the form: 

Q= a Hb                                                                                                      …(5.2) 

S = c Qd                                                                                                                       … (5.3) 

where , ‘a’, ‘b’, ‘c’ and ‘d’ are constants 

 

5.4 DEVELOPMENT OF RAINFALL-RUNOFF AND SEDIMENT-RUNOFF ANN 

MODELS FOR SUBANSIRI RIVER BASIN 

 
5.4.1 Input data and ANN model development for Rainfall-Runoff models 

The daily data of discharge for ten years (1997-2006) were available at the 

Choulduaghat site which has been considered as the outlet of the basin for the present study. 

Daily rainfall data were available for three years (2003-2005) at Daporizo, Ziro, Bomdilla, 

Bhalukpong, Choulduaghat, Badatighat and North Lakhimpur. Daily average temperature at 

one grid point within the Subansiri basin for three years from 2003-2005 has been used. 

Similarly, three years of daily discharge data has also been used for ANN models 

development. 

The output from the model is the runoff at time step t, Qt . It has been shown by many 

authors that the current runoff can be mapped better by considering, in addition to the current 

value of rainfall and temperature, the rainfall, temperature and runoff at the previous times. 

Therefore, in addition to Rt , and Tt  i.e., rainfall and temperature at time step t, other variables 

such as Rt-1 , Rt-2 , Tt-1 , Tt-2 , and Qt-1  were also considered in the input. Various combinations 

of input data were considered based upon a cross correlation of the data at various stations 

with varying lag time as given in Table 5.3. Based on the cross correlation, various ANN 

models considered for ANN training are given in Table 5.4.  

 

5.4.2 Input data and ANN model development for Runoff-sediment models 

The daily data of discharge and suspended sediment concentration for ten years 

(1997-2006) were available at the Choulduaghat site which has been considered as the outlet 

of the basin for the present study. Daily rainfall data were available for three years (2003-

2005) at Daporizo, Ziro, Bomdilla, Bhalukpong, Choulduaghat, Badatighat and North 
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Lakhimpur. Daily average temperature at one grid point within the Subansiri basin for three 

years from 2003-2005 has been used. Similarly, three years of daily discharge and suspended 

sediment concentration data has also been used for ANN models development. 

The output from the model is the sediment concentration at time step t, St . It has been 

shown by many authors that the current sediment concentration can be mapped better by 

considering, in addition to the current value of rainfall, temperature, runoff and the rainfall, 

temperature, runoff and sediment concentration at the previous times. Therefore, in addition 

to Rt , Tt  and Qt , i.e., rainfall, temperature and runoff at time step t, other variables such as Rt-

1 , Rt-2 , Tt-1 , Tt-2 , Qt-1  Qt-2,  and St-1  were also considered in the input. Various combinations of 

input data were considered based upon a cross correlation of the data at various stations with 

varying lag time as given in Table 5.3. Based on the cross correlation, various ANN models 

considered for ANN training are given in Table 5.5.  
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Table 5.3: Cross Correlation of Data 
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Table 5.4: Various ANN rainfall-runoff models 

 

Table 5.5: Various ANN sediment-runoff models 

ANN  
Model 

Input  
Variables 

Output 
Variables 

 ANNS-1 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Qt(Choulduaghat) 

 St 

 ANNS-2 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Tt(G1), 
Qt(Choulduaghat) 

 St 

 ANNS-3 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Rt-1(Ziro), Tt(G1), 
Qt(Choulduaghat) 

 St 

 ANNS-4 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Rt-1(Ziro), Tt(G1), 
Qt(Choulduaghat),  
St-1(Choulduaghat) 

 St 

 

 
ANN  

Model 

Input  
Variables 

Output 
Variables 

ANNR-1 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght) 

    Qt 

ANNR-2 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Tt(G1) 

    Qt 

ANNR-3 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Rt-1(Ziro), Tt(G1) 

    Qt 

ANNR-4 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Rt-1(Ziro), Tt(G1), 
Tt-1(G1) 

    Qt 

ANNR-5 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Rt-1(Ziro), Tt(G1), 
Tt-1(G1), Tt-2(G1) 

    Qt 

ANNR-6 Rt(Ziro, Daporizo, Bhalukpong, Bomdilla, 
Badatighat, Choulduaght), Rt-1(Ziro), Tt(G1), 
Qt-1(choulduaghat) 

    Qt 
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5.5 ANN MODELS  

5.5.1 TRAINING OF ANN MODELS  

The training of various ANN models has been accomplished through the ANN 

software, namely, Neural Power (NPP 2.5, 2004). A back-propagation ANN with the 

generalized delta rule as the training algorithm has been employed in this study. The structure 

of the ANN models were three and four layer BPANN developed with non-linear sigmoid as 

activation function uniformly between the layers. Nodes in the input layer were equal to 

number of input variables, nodes in hidden layer were varied from the number of input nodes 

to approximately double of input nodes (Hipel, et al., 1994) and the nodes in the output layer 

was one as the models provide single output. Therefore, various ANN models were trained 

considering different hidden node numbers on a trial and error fashion and the best 

performing model has been reported in the results. 

The learning of ANN initiates with the normalization (re-scaling) of all data with the 

maximum value of respective variable thus reducing the data domain in the range 0 to 1. This 

was accomplished through the software. All interconnecting links between nodes of 

successive layers were assigned random values called weight between +0.5 to –0.5 and a 

constant value of 0.15 and 0.8 was considered for learning rate ‘η’ and momentum term ‘α’ 

respectively. The quick propagation (QP) learning algorithm has been adopted for the 

training of all the ANN models. QP is a heuristic modification of the standard back 

propagation and is very fast (Neural Power, 2003). The network weights were updated after 

presenting each pattern from the learning data set, rather than once per iteration. 

The criteria selected to avoid over training was generalization of ANN through cross-

validation (Haykin, 1994). For this purpose, the data were divided into training, testing and 

validation sets. Training data (730/731 patterns) were used for estimation of weights of the 

ANN model and testing data (365/366 patterns) for evaluation of the performance of ANN 

model during training. Training was stopped when the error for the testing dataset started 

increasing. In this way, the training and testing datasets have been used to assess the 

performance of various candidate model structures, and thereby choose the best one. The 

particular ANN model with the best performing parameter values was chosen and the 

generalized performance of the resulting network has been measured on the validation data 

set (two years data) to which it has never before been exposed. The performance of the model 

was tested through the statistical criterion discussed in the following section. 
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5.5.2 Performance Evaluation Criteria 

The statistical and hydrological evaluation criteria used in the present study are root 

mean square error (RMSE), correlation coefficient (R) and coefficient of efficiency (CE) or 

coefficient of determination (DC or R2).  

 

5.5.2.1 Root mean square error (RMSE) 

 It yields the residual error in terms of the mean square error expressed as (Yu, 1994) 

RMSE =   
n
 varianceresidual =   

1/2
n
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where, Y and Ŷ are the observed and estimated values respectively and n is the number of 

observations. 

5.5.2.2 Correlation coefficient (R) 

It is expressed as 

R   =   
( )( ){ }

( ) ( )
2/1

2

j

n

1j

2
j

n

1j

jj

n

1j
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where, Y  and Y


 are mean of observed and estimated values. 

5.5.2.3  Coefficient of determination (DC) 

Based on the standardization of residual variance with initial variance, the coefficient 

of determination can be used to compare the relative performance of the two approaches 

effectively (Nash and Sutcliffe, 1970).  It is expressed as: 

DC =   {1- 
varianceinitial
varianceresidual } x100  
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The coefficient of determination is also commonly known as the coefficient of 

efficiency which may be written in a number of ways and represents the fraction of 

variance that is explained by regression. The closer this ratio is to unity, the better is 

the regression relation. 
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                                            Results and Discussion 
 

6.1 RUNOFF AND SEDIMENT MODELING BASED ON RATING CURVE 

          TECHNIQUE 

 Based on the rating curve technique (Eq. 5.2) the  equations for the three sites are 

given below: 

 

1. Stage discharge Rating Curve for Pandu site on Brahmaputra  River 

     C=1.0 E-22Q16.781                                                                                                                 …(6.1) 

 

 

 

 

 

 

 

 

 

 

 

2. Stage discharge Rating Curve for Panchratna site on Brahmaputra  River 

C=8.0 E-14Q11.484                                                                                                                 …(6.2) 
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3. Sediment dischage Rating Curve for Panchratna site on Brahmaputra  River 

C=0.002Q0.6888                                                                                                                …(6.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Stage discharge Rating Curve for Chouldhuaghat site on Subansiri  River 

C=1.0 E-93Q48.48                                                                                                                 …(6.4) 
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5. Sediment discharge Rating Curve for Chouldhuaghat site on Subansiri  River 

C=1.0 E-06Q1.2823                                                                                                                 …(6.5) 

 

 

 

 

 

 

 

where, H =  River stage in m. 

            S = Sediment Concentration in g/l 

            Q = Discharge in the river in Cumec 

 

6.2   RATING CURVE MODELING BASED ON ANN TECHNIQUE 

The statistical performances of various ANN models for all the three study gauging 

sites are summarized in Table 6.1 to Table 6.5. The tables show the comparative performance 

of all the models during training, testing and validation. 

 

6.2.1 Stage discharge ANN Modeling for Pandu site on Brahmaputra  River 

The results are summarized in Table 6.1. 

 
Table 6.1 Comparative performance of various stage discharge ANN models for Pandu 

site (Brahmaputra River) 

ANN model 
Training Testing Validation 

RMSE R DC R DC R DC 

ANNPH-1  
(1-2-1) 

2468.6 0.974 0.949 0.998 0.974 0.987 0.749 

ANNPH-2  
(3-2-1) 

745.2 0.995 0.995 0.999 0.999 0.998 0.995 

ANNPH-3  710.46 0.998 0.996 0.999 0.999 0.998 0.994 
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(5-4-1) 
ANNPH-4  
(7-6-1) 

676.85 0.998 0.996 0.999 0.999 0.997 0.995 

ANNPH-5  
(9-7-1) 

654.29 0.998 0.996 0.999 0.999 0.997 0.995 

 

It is observed from Table 6.1 that the RMSE values are generally low for all the ANN 

models. There are two candidate models in RMSE criteria, ANNPH2, i.e, ANN model with 

two hidden nodes and ANNPH4 model with three hidden nodes. In ANNPH2 model, the 

RMSE value is 745.2 during training. In ANN3 model, the RMSE value is 710.46 during 

training.  

It can be seen from Table 6.1 that the correlation coefficient (R) values are very high 

(more than 0.90, i.e., 90%) for all the ANN models, during all the three phases, i.e., training, 

testing as well as validation. It is also observed that there is not much decrease in the R 

values during validation as compared to the training phase. The performance of ANNPH3 

model is the best in R statistic. The R values for ANN are 0.998, 0.999 and 0.998 during 

training, testing and validation respectively. The increase in R values of ANNPH3 during 

validation indicates good generalization capability of the ANN model.  

In the determination coefficient (DC) statistic, all the ANN models perform well. The 

DC values are fairly high (more than 0.90) for all models during all the three phases. In DC 

statistic also, ANNPH2 model performs the best. The DC values for ANN2 are 0.995, 0.999, 

and 0.995 during training, testing and validation respectively. There is not much decrease in 

the DC values during validation which indicate good generalization capability of the ANN 

models.  

Therefore, ANN2 is the best performing model in all the three statistical and 

hydrological criteria. Fig. 6.1 presents the plots of observed and estimated discharge for 

ANN2 mdel during training (a), testing (b) and validation (c). It is observed from Fig 6.1 that 

there is very little mismatch between the observed and estimated discharge series for ANN2 

model during all the three phases.  

 

6.2.2 Stage Discharge Modeling for Panchratna site on Brahmaputra  River 

The results are summarized in Table 6.2. 
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Table 6.2 Comparative performance of various stage discharge ANN models  
for Panchratna site (Brahmaputra River) 

ANN model 
Training Testing Validation 

RMSE R DC R DC R DC 

ANNPRH-1  
(1-2-1) 

2285.6 0.984 0.968 0.975 0.893 0.991 0.977 

ANNPRH-2  
(3-5-1) 

1189.7 0.999 0.999 0.993 0.986 0.991 0.982 

ANNPRH-3  
(5-4-1) 

853.71 0.998 0.998 0.997 0.992 0.996 0.991 

ANNPRH-4  
(7-6-1) 

856.66 0.998 0.996 0.997 0.992 0.996 0.991 

ANNPRH-5  
(9-7-1) 

857.52 0.998 0.996 0.997 0.991 0.996 0.991 
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Fig. 6.1 Comparative Performance of Observed Discharge with Estimated Discharge using 

ANNPH-2 at Pandu 
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four hidden nodes and ANNPRH4 model with six hidden nodes. In ANN3 model, the RMSE 

value is 853.71 during training. In ANN4 model, the RMSE value is 856.66 during training.  

It can be seen from Table 6.1 that the correlation coefficient (R) values are very high 

(more than 0.90, i.e., 90%) for all the ANN models, during all the three phases, i.e., training, 

testing as well as validation. It is also observed that there is not much decrease in the R 

values during validation as compared to the training phase. The performance of ANNPRH3 

model is the best in R statistic, the R values are 0.998, 0.997 and 0.996 during training, 

testing and validation respectively.  

In the determination coefficient (DC) statistic, all the ANN models perform well. The 

DC values are fairly high (more than 0.90) for all models during all the three phases. In DC 

statistic also, ANNPRH3 model performs the best. The DC values for ANN2 are 0.998, 

0.992, and 0.991 during training, testing and validation respectively. There is not much 

decrease in the DC values during validation which indicate good generalization capability of 

the ANN models.  
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that there is very little mismatch between the observed and estimated discharge series for 

ANNPRH3 model during all the three phases.  

 

6.2.3 Sediment discharge Modeling for Panchratna site on Brahmaputra  River 

The results are summarized in Table 6.3. 

Table 6.3 Comparative performance of various sediment-discharge ANN models for 

Panchratna site (Brahmaputra River) 

ANN model 
Training Testing Validation 

RMSE R DC R DC R DC 

ANNPRS-1  
(1-2-1) 

0.1788 0.878 0.771 0.417 0.468 0.996 0.628 

ANNPRS-2  
(3-3-1) 

0.0378 0.995 0.989 0.996 0.991 0.770 0.990 

ANNPRS-3  
(5-4-1) 

0.0348 0.996 0.991 0.995 0.990 0.996 0.993 

ANNPRS-4  
(7-10-1) 

0.0379 0.995 0.989 0.994 0.988 0.996 0.990 

ANNPRS-5  
(9-12-1) 

0.0347 0.996 0.991 0.992 0.983 0.995 0.989 
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It is observed from Table 6.3 that the RMSE values are generally low for all the ANN 
models. There are two candidate models in RMSE criteria, ANNPRS3, i.e, ANN model with 
four hidden nodes and ANNPRS5 model with six hidden nodes. In ANNPRS3 model, the 
RMSE value is 0.0348 during training. In ANNPRS5 model, the RMSE value is 0.0347 
during training.  

It can be seen from Table 6.3 that the correlation coefficient (R) values are very high 
(more than 0.90, i.e., 90%) for all the ANN models, during all the three phases, i.e., training, 
testing as well as validation. It is also observed that there is not much decrease in the R 
values during validation as compared to the training phase. The performance of ANNPRS3 
model is the best in R statistic. The R values for ANN are 0.996, 0.995 and 0.996 during 
training, testing and validation respectively.  

In the determination coefficient (DC) statistic, all the ANN models perform well. The 
DC values are fairly high (more than 0.90) for all models during all the three phases. In DC 
statistic also, ANNPRS3 model performs the best. The DC values for ANNPRS3 are 0.991, 
0.990, and 0.993 during training, testing and validation respectively. There is increase in the 
DC values during validation which indicate good generalization capability of the ANN 
models.  

Therefore, ANNPRS3 is the best performing model in all the three statistical and 
hydrological criteria. Fig. 6.3 presents the plots of observed and estimated discharge for 
ANN3 model during training (a), testing (b) and validation (c). It is observed from Fig. 6.3 
that there is very little mismatch between the observed and estimated discharge series for 
ANN2 model during all the three phases.  
 

 6.2.4 Stage discharge Modeling for Chouldhuaghat site on Subansiri  River 

The results are summarized in Table 6.4. 

Table 6.4 Comparative performance of various stage-discharge ANN models  
for Choudhuaghat site (Subansiri River) 

ANN model 
Training Testing Validation 

RMSE R DC R DC R DC 
ANNCH-1  
(1-2-1) 

957.89 0.903 0.813 0.955 0.097 0.969 0.047 

ANNCH-2  
(3-5-1) 

384.71 0.985 0.970 0.986 0.966 0.983 0.948 

ANNCH-3  
(5-4-1) 

363.78 0.986 0.973 0.986 0.969 0.986 0.961 

ANNCH-4  
(7-6-1) 

356.01 0.987 0.974 0.986 0.971 0.986 0.968 

ANNCH-5  
(9-7-1) 

340.63 0.988 0.976 0.987 0.970 0.988 0.971 
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Fig. 6.3 Comparative Performance of Observed Sediment Concentration with  
Estimated Sediment  Concentration using ANNPRS-3 at Panchratna 
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It is observed from Table 6.4 that the RMSE values are generally low for all the ANN 
models. The performance of ANNCH5 model is the best in RMSE statistic.. In ANNCH5 
model, the RMSE value is 340.63 during training.  

It can be seen from Table 6.4 that the correlation coefficient (R) values are very high 
(more than 0.90, i.e., 90%) for all the ANN models, during all the three phases, i.e., training, 
testing as well as validation. It is also observed that there is not much decrease in the R 
values during validation as compared to the training phase. The performance of ANNCH5 
model is the best in R statistic. The R values for ANN are 0.988, 0.987 and 0.988 during 
training, testing and validation respectively.  

In the determination coefficient (DC) statistic, all the ANN models perform well. The 
DC values are fairly high (more than 0.90) for all models  during all the three phases. In DC 
statistic also, ANNCH5 model performs the best. The DC values for ANNCH5 are 0.976, 
0.970, and 0.971 during training, testing and validation respectively. There is increase in the 
DC values during validation which indicate good generalization capability of the ANN 
models.  

Therefore, ANNCH5 is the best performing model in all the three statistical and 
hydrological criteria. Fig. 6.4 presents the plots of observed and estimated discharge for 
ANN3 model during training (a), testing (b) and validation (c). It is observed from Fig. 6.4 
that there is very little mismatch between the observed and estimated discharge series for 
ANN2 model during all the three phases.  
 
6.2.5 Sediment discharge Modeling for Chouldhuaghat site on Subansiri  River 

The results are summarized in Table 6.5. 

Table. 6.5. Comparative performance of various runoff-sediment ANN models for 
Chouldhuaghat site on Subansiri  River 

 

ANN model 
Training Testing Validation 

RMSE R DC R DC R DC 

ANNCS-1  
(1-2-1) 

0.154 0.780 0.606 0.787 0.025 0.708 0.089 

ANNCS-2  
(3-3-1) 

0.0822 0.942 0.888 0.940 0.845 0.879 0.587 

ANNCS-3  
(5-4-1) 

0.084 0.939 0.881 0.940 0.836 0.887 0.583 

ANNCS-4  
(7-10-1) 

0.077 0.950 0.902 0.948 0.861 0.900 0.627 

ANNCS-5  
(9-12-1) 

0.076 0.950 0.904 0.942 0.860 0.889 0.672 
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Fig. 6.4 Comparative Performance of Observed Sediment Concentration with 
Estimated Sediment Concentration Using ANNCH-5 at Choulduaghat 
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It is observed from Table 6.5 that the RMSE values are generally low for all the ANN 
models. The performance of ANNCH5 model is the best in RMSE statistic.. In ANNCS5 
model, the RMSE value is 0.076 during training.  

It can be seen from Table 6.4 that the correlation coefficient (R) values are very high 
(more than 0.90, i.e., 90%) for all the ANN models, during all the three phases, i.e., training, 
testing as well as validation. It is also observed that there is not much decrease in the R 
values during validation as compared to the training phase. The performance of ANNCS5 
model is the best in R statistic. The R values are 0.995, 0.942 and 0.889 during training, 
testing and validation respectively.  

In the determination coefficient (DC) statistic, all the ANN models perform well. The 
DC values are fairly high (more than 0.90) for all models during all the three phases. In DC 
statistic also, ANNCS5 model performs the best. The DC values for ANNCS5 are 0.904, 
0.860, and 0.672 during training, testing and validation respectively. There is not much 
decrease in the DC values during validation which indicate good generalization capability of 
the ANN models.  

Therefore, ANNCS5 is the best performing model in all the three statistical and 
hydrological criteria. Fig. 6.5 presents the plots of observed and estimated discharge for 
ANNCS5 model during training (a), testing (b) and validation (c). It is observed from Fig. 6.5 
that there is very little mismatch between the observed and estimated discharge series for 
ANN2 model during all the three phases.  

 
6.3 ANN BASED RAINFALL RUNOFF MODELLING  

 

6.3.1 Rainfall- Runoff in Subansiri Basin using ANN  

The results are summarized in Table 6.6. 
 

Table 6.6 Comparative performance of various rainfall-runoff 
ANN models for Subansiri Basin 

ANN model 
Training Testing 

RMSE R DC R DC 

ANNR-1  
(6-6-1) 

1345.0 0.74 0.55 0.61 0.37 

ANNR-2  
(7-7-1) 

1062.5 0.85 0.72 0.80 0.62 

ANNR-3  
(8-8-1) 

1044.9 0.86 0.73 0.81 0.64 

ANNR-4  
(9-9-1) 

1049.6 0.87 0.76 0.78 0.60 

ANNR-5  
(10-10-1) 

1053.8 0.85 0.72 0.81 0.64 

ANNR-6 
(9-9-1) 

450.26 0.9748 0.9502 0.9721 0.9448 
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(c) Validation 

Fig. 6.5 Comparative performance of observed sediment concentration with estimated sediment  
concentration using ANNCS-5 at Chouldhuaghat 
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It is observed from Table 6.6 that the performance of ANNR-3 model without 
previous discharge as input and ANNR-6 model with previous discharge as input are the best 
among the two types of ANN models developed for rainfall-runoff modeling. However, the 
performance of ANNR-6 is much higher than the ANNR-3 model in all the three statistical 
criterion and in both the phases, i.e., training as well as testing/validation. The RMSE value is 
450.26 for ANNR-6 compared to the RMSE value of 1044.9 for ANNR-6 which is less than 
50%. Similarly, the R and DC values for ANNR-3 are much higher han hose of ANNR-3.  

Therefore, ANNR-6 is the best performing model in all the three statistical and 
hydrological criteria. Fig. 6.6 presents the plots of observed and estimated discharge for 
ANNR-6 model during training (a), and validation (b). 
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Fig. 6.6 Comparative Performance of Observed Discharge with Estimated  
Discharge using ANNR-6 for Subansiri Basin 
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6.3.2 Sediment-Runoff Modeling for Subansiri Basin using ANN  

 

The results are summarized in Table 6.7. 

 

Table 6.7 Comparative performance of various sediment-runoff 
ANN models for Subansiri Basin 

 

ANN model 
Training Testing 

RMSE R DC R DC 

ANNS-1  
(7-7-1) 

0.0537 0.804 0.6458 0.7766 -5.5621 

ANNS-2  
(8-8-1) 

0.0454 0.8640 0.7465 0.7558 -5.3152 

ANNS-3  
(9-9-1) 

0.0469 0.854 0.729 0.777 -5.3152 

ANNS-4  
(10-10-1) 

0.01738 0.9812 0.9629 0.9821 0.9474 

 

The results of sediment-runoff modeling using ANN have been found to be very close 

to the observed values as indicated through the statistical performance.  

It is observed from Table 6.7 that the RMSE values are generally low for all the ANN 

models. The performance of ANNS4 model is the best in RMSE statistic. In ANNS4 model, 

the RMSE value is 0.01738 during training.  

It can be seen from Table 6.4 that the correlation coefficient (R) values are very high 

(more than 0.90, i.e., 90%) for ANNS4 model, during the two phases, i.e., training as well as 

testing. It is also observed that there is not much decrease in the R values during validation as 

compared to the training phase. The R values for ANNS4 are 0.9812 and 0.921 during 

training and testing respectively.  

In the determination coefficient (DC) statistic also, ANNS4 model performs the best. 

The DC values for ANNS4 are 0.9629 and 0.9474 during training and testing respectively. 

There is increase in the DC values during validation which indicate good generalization 

capability of the ANN models.  

Therefore, ANNS4 is the best performing model in all the three statistical and 

hydrological criteria. Fig. 6.7 presents the plots of observed and estimated discharge for 

ANNS4 model during training (a) and testing (b).  
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Fig. 6.7 Comparative Performance of Observed Sediment Concentration with Estimated 
Sediment Concentration using ANNS-4 for Subansiri Basin 
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       Summary  
 

In this study, the modeling of two hydrological processes, namely, rainfall-runoff 

process and runoff sediment process by ANNs has been accomplished for Subansiri River 

basin, the biggest sub-basin of Brahmaputra within India. The data of daily rainfall, daily 

average temperature, daily stage, daily sediment concentration/load and daily discharge for 

the period 1996-2005 at various hydrometeorological stations in the study basin have been 

considered  for stage-discharge and runoff-sediment rating curves using artificial neural 

network (ANN) models & conventional techniques for the important gauging sites in the 

Brahmaputra River basin and development of rainfall-runoff  & sediment-runoff models 

using artificial neural network (ANN technique for Subansiri River basin. 

A back-propagation ANN with the generalized delta rule as the training algorithm has 

been employed in this study. The structure of all the ANN models were three layer BPANN 

developed with non-linear sigmoid as activation function uniformly between the layers. 

Nodes in the input layer were equal to number of input variables, nodes in hidden layer were 

varied from the number of input nodes to approximately double of input nodes (Hipal, 1994) 

and the nodes in the output layer was one as the models provide single output. All 

interconnecting links between nodes of successive layers were initially assigned random 

weights and a constant value of 0.15 and 0.5 was considered for learning rate η and 

momentum term α respectively. The quick propagation (QP) learning algorithm has been 

adopted for the training of all the ANN models. The network weights were updated after 

presenting each pattern from the learning data set, rather than once per iteration. The criteria 

selected to avoid over training was generalization of ANN through cross-validation (Haykin, 

1994). The statistical and hydrological evaluation criteria used are root mean square error 

(RMSE), correlation coefficient (R) and determination coefficient (DC).  

From the preceding analysis, the following findings have emerged: 

[A] Brahmaputra Main Stem 

(i) Pandu Site 

Daily Mean value of stage = 44.2 m 

Daily Mean value of Discharge =12561.95 cumec 

(ii) Panchratna 

Daily Mean value of stage = 31.51m 

7 
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Daily Mean value of Discharge = 15492.42 cumec 

Daily Mean value of sediment conc = 0.4911 g/l 

                                                           = 491.1 ppm 

[B] Subansiri Basin 

          Basin area (upto Chouldughat site) = 28,000 Sq. Km 

          River Length = 442 Km 

          Av annual rainfall = 2150 mm 

          Daily Mean value of stage = 94.38m 

          Daily Mean value of Discharge = 2410.27 cumec 

          Daily Mean value of sediment conc = 0.1137 g/l 

                                                                     = 113.7 ppm 

The results of modeling using ANN approach obtained in this study indicate the 

capability of back propagation ANN models in simulation of daily river flows using daily 

discharge, rainfall and temperature data (correlation more than 90%). Because the ANN 

approach presented here does not provide models that have physically realistic components 

and parameters, it is by no means a substitute for conceptual modeling. However, the results 

suggest that the ANN approach may provide a superior alternative to the regression approach 

for developing input-output simulation and forecasting models in situations that do not 

require modeling of the internal structure of the basin. 

The results of sediment-runoff modeling using ANN have been found to be much 

closer to the observed values (correlation more than 99%) than the conventional sediment 

rating curve technique. The study shows that the ANN technique can be successfully applied 

for the development of reliable relationships between sediment and discharge in a river when 

other approaches cannot succeed due to the uncertainty and the stochastic nature of the 

sediment movement. 

Moreover, the ANN technique has preference over the conventional methods as 

ANNs can accept any number of effective variables as input parameters without omission or 

simplification as commonly done in the conventional methods. The presented ANN models 

were constructed by using only field river data, and it has no boundary conditions in 

application. The only restriction is that the model cannot estimate accurately the discharge or 

sediment load for data out of the range of the training pattern data. Such a problem can easily 

be overcome by feeding the training patterns with wide range data.  
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       CHAPTER-1 

INTRODUCTION 

1.1 INTRODUCTION 

The flow resistance characteristics of an alluvial stream are highly complex which warrant 

considerable research efforts. Due to this reason water surface level, velocity and discharge 

computations in alluvial streams have great deal of uncertainties. The art of modelling an 

alluvial river is still in developing stage and lot of ground yet remain to be uncovered. The 

dynamics of flow is further complicated in a natural stream due to wide differences in 

hydraulic properties and resistances of flow in the main channel and the subsidiary channels.  

The position of the free surface is likely to change with respect to time and space and also by 

the fact that the depth of flow, the discharge and the slopes of the channel bottom and of the 

free surface are interdependent. To add to the intensity of parameters, a more profound 

problem defines the flow behavior and attributes i.e., the fact that rivers and other 

watercourses, in most cases, run through loose material and the water carries/transport some 

of this material along with it. Generally the loose non-cohesive material through which a 

river flows is generally termed as “sediment”.  

An integrated study in Fluvial Hydraulics and Sediments Transport involves the analysis of 

the capacity of the river or channel to carry water and sediment, and the corresponding 

morphological changes in both the main channel and floodplain. Sediment transport in 

concise, replicates the various aspects of the dynamics of solid particle movement, properties 

of the transported materials, and characteristics of the transporting medium, which in turn, 

may be affected by the solids transported.  

The morphological changes of rivers are deeply interrelated with bed deformation and bank 

erosion because of the mutual relationship between water flow and sediment transport. A 

better understanding of these processes is very important in river engineering to prevent 

disasters due to flooding, to design and manage hydraulic structures, like bridges and water 

intake towers, and to maintain river ecosystems and the landscape for environmental 

Engineering purposes.  

Reliable and quantitative estimate of the bed aggradation or degradation are very important in 

river engineering and management projects as well as accurately predicting the water surface 

elevations during floods in estimating flood related damage. Thus, engineers are greatly 
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interested in accurately predicting the behavior of river under various flows and sediment 

loads so that better information can be obtained for the planning and design of river control 

structures, flood protection measures and other water diversion structures. 

In the present study, it will be endeavor to investigate the flow propagation behavior at 

different flow stages with varying sediment transport capacity and sediment concentration 

and thereby predicting time variant bed profile using recently launched flow simulation 

model HEC-RAS for 622.73 km reach of Brahmaputra. 

1.2 EARLIER RESEARCH 

To date, there are many empirical formulas for the calculation of sediment discharge in 

alluvial channels, but few have gained general applications to estuaries and coastal waters. 

For sediment transport in rivers, Yang and Wan (1991) provided a good summary of the well-

cited equations, such as those proposed by Einstein (1950), Meyer-Peter and Muller (1948), 

Bagnold (1966), Yalin (1977), Engelund and Hansen (1972), and Ackers and White(1973) 

transport and local flow characteristics to numerical modelers. 

A number of sediment transport studies have been conducted in channels and flumes to 

develop analytical solutions for simplifying the governing equations describing complex 

phenomenon of the aggradation and degradation processes (Sinnakaudan, 2006). Researchers 

have separately treated the suspended load and the bed load calculation. However recent 

literature shows that total sediment load (or bed material load) equations are much preferred 

and researchers are now moving toward employing more complex analytical methods. Good 

appraisals of available total sediment load equations and their performance were given by 

Acker and White (1973), Garde and Raju(2000), Yang and Wan (1991), Chen (1973), 

Chang(1984). Some of the available total bed material load equations are developed by Graf 

(1971), Ackers and White (1973), Rijn (1996), and Yang (1973). The existing equations are 

mostly developed based on flume data in western countries including America and Western 

Europe. However not all of these equations are widely used or evaluated in other parts of the 

world (Karamisheva, 2006). Several equations such as Ackers–White (1973) have been 

incorporated into current loose boundary models such as HEC-6 (USACE 1993) and the Graf 

(1971) equation is available in Fluvial-12 (Chang 1993) to simulate the sediment transporting 

capability of rivers. 
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The prediction of open channel flows using numerical models is of great interest to hydraulic 

researchers and engineers. Most open channel flows are well described by the Saint Venant 

equations. Although the Saint Venant equations are derived based on the shallow water 

hypothesis, many studies have revealed that the equations are also applicable to the rapidly 

varied flows such as dam-break flows. So far, many numerical schemes for the Saint Venant 

equations have been developed. However, most conventional schemes are incapable of 

encompassing the diverse and complex open channel flows. For example, the four-point 

implicit scheme was found to have numerical stability problems with Tran critical flow (Cao 

and Carling 2002).  

One-dimensional (1-D) modelling of sediment transport in streams has seen extensive 

development over the past decades. Chen (1973), for the first time formulated a model that 

included sediment transport for generalized use. Dass (1975) developed multi-stream flow 

and compound stream flow models by adopting the uncoupled solution procedure to route 

water and sediment in non uniform channels. Steady and step wise quasi-unsteady 1-D 

models, such as HEC-6 (HEC 1990a)  model, Chang’s(1984) model, and others, have been 

widely tested and applied to sedimentation studies in reservoirs and rivers in which the long 

wave assumption is valid and the long-term results are mainly considered. Many unsteady 

flow models (Cunge et al. 1980) have been developed and applied to river estuaries and other 

situations where the unsteadiness of flow prevails. With a lot of enhancement and refinement, 

1-D models continue to have their place in engineering applications. The majority of the early 

1-D sediment transport models decoupled the flow and sediment calculations, which resulted 

in simpler computer codes. This strategy was justified because of the different time scales of 

flow and sediment transport and the inherent inaccuracies introduced by the use of empirical 

formulas for bed roughness and sediment transport capacity. Recently, much effort has been 

made toward relaxing the limit in time and space steps and extending the applicability of the 

fully decoupled model. One effective approach is to couple the equations of flow and 

sediment movement, which was done by Cao et al. (2002), who compared the numerical 

stability of coupled and decoupled models and found out that the coupled model is more 

stable. However, the implementation of a coupled model for non uniform sediment transport 

is rather complicated, which is one of the reasons the decoupled models are still used by 

many scientists. Another approach, which has substantially improved sediment transport 

modeling, is the non equilibrium (also referred as non saturated) sediment transport model 

(Cao and Carling, 2002). In the traditional equilibrium (or saturated) transport model, the 
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actual sediment transport rate is assumed equal to the sediment transport capacity at every 

cross section (i.e., locally at equilibrium state, and the bed change is calculated by the 

sediment continuity equation (Cao and Carling, 2002). However, in many cases, such as 

sediment strongly overloading or under loading, the inflow sediment discharge imposed at 

the inlet is significantly different from the transport capacity, which might lead to difficulties 

in the calculation of bed changes near the inlet, thus requiring a small time step. The non 

equilibrium transport model adopts the mass transport equation to determine the actual 

sediment transport rate, which should be more suitable for the simulation of sediment 

transport in natural rivers that are mostly in non equilibrium state.  

1.3 OBJECTIVE 

The study is aimed to: 

• Application of flow simulation model HEC-RAS to investigate flow characteristics 

and behavior at different flow stages with varying sediment inflows and prediction of 

longitudinal bed profile. 

• Investigation of the suitability of available sediment predictor for assessing the 

sediment transport capacity for the study reach.  

• Estimation of stream power for justifying aggradation and degradation in the study 

reach. 

1.4 STUDY AREA   

The area under the consideration for the present study encloses a 622.73 km river stretch of 

Brahmaputra encompassing 65 no. of different cross-sections, 7 reaches with Kobo on the 

northern most (65 no.) to Dhubri on the south (2 no.). The prime data, the study utilizes is the 

survey data of the cross sections taken in the years 1993 and 1997. The other hydrologic data 

of the river at different locations (Pandu, Jogighopa etc,) for the years 1993 to 2002 sourced 

from Central Water Commission and Brahmaputra Board). Photographic images derived 

from different digital satellites imageries processing in the earlier works are incorporated to 

draw the idea of the area at a glance. 
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1.5 THE METHODOLOGY 

The methodology for this work is to first assess Manning’s n in all segments( all 7 reaches) of 

the whole study area (622.73 K.M.) through simulating the flow and comparing the 

computed water surface profiles at down stream with observed water surface profiles using 1-

D hydraulic model namely HEC-RAS 4.0. Secondly, the sediment transport module in HEC-

RAS 4.0 proposed to be performed for the study reach to estimate long term aggradation and 

degradation to predict the longitudinal bed profile through appropriately feeding inflowing 

sediment concentration, sediment inflow from tributaries, bed material sampling and 

selection of appropriate sediment transport function along with flow data and calibrated 

resistance parameter. For the model constituted in this work, several available sediment 

discharge predictors will be experimented and to adopt the method which yield best possible 

results. 
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                                                                       CHAPTER-2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Sediment transport problems related to the identification and mitigation of flood hazard on 

alluvial fans in arid and semiarid environments is a current and critical concern of the 

engineering profession. In particular, estimating the length and maximum depth of deposition 

or erosion that occurs during a flow event when there is a change in the longitudinal slope of 

the channel is an important problem. Deposition occurs when the slope changes from steep to 

mild and erosion occurs when the slope changes from mild to steep. Once, a flood is over, or 

in a gradual time span, large changes on the river bed are observed with banks or piers 

eroded, while other locations get covered or aggraded. It might be impacted that when 

extremely large floods with limited sediment supplies and high sediment carrying capacities 

occur in rivers with erodible bed and bank materials, scour will continue to take place within 

the erosive capacity of the stream till it approaches the minimum/optimum value required to 

transport the available material.  

Traditional approaches have investigated the ways in which stream flows, sediment loads and 

channel forms vary along a river from headwaters to mouth and with time over periods 

ranging from hours to years. Represented in their most simple form, rivers have been viewed 

a unidirectional systems that change progressively from headwaters to mouth. The river 

continuum concept takes the physical structure of a stream, coupled with the hydrological 

regime and energy inputs to produce a series of responses (in form as stream flow 

hydrographs, etc.)  

2.2 HISTORY  

An exemplary representation of history of river channel evolution may be envisioned through 

Fig: 2.1 (Schumm 2000). 
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The historical background of a river is based on how the channel evolved through the passage 

of time.  In the Fig: 2.1, the evolutionary transient phases of a channel in the vertical plane 

are presented. From 1-4 the channel is confined by the bed rock valley walls. During stages 

5-7 the channel is constrained by bedrock valley wall and terraces of older alluvium. Finally, 

at the stage of 8-9 the channel has reached to regime (Schumm; 2000). 

High floods are usually accompanied by high sediment charge, it could be speculated that the 

oldest streams were wide, shallow, steep, braided bed-load channel (Fig: 2.2a)The decrease in 

the sediment  load perhaps were more rapid  than the discharge  a meander-braided transition 

pattern developed with a well defined single thalweg (Fig: 2.2b). The thalweg, in turn, 

became the channel as a new floodplain formed and the channel further narrowed with further 

reduction of sediment load (Fig: 2.2c). Finally, as bed load became a fraction of its former 

volume, a meandering mixed load channel with large meanders formed (Fig: 2.2 d). 
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Fig: 2.1 Cross Section of Valley and Incising Stream at time 
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Primarily concerning to the Longitudinal  bed profile it is found customary to mention  the 

hydraulic characteristics of river flow dynamics with sediment discharge which constitutes 

and imparts dynamism to river streambed and other river morphological parameters. It is 

spontaneous to understand that a river originates from its watershed at higher altitudes of 

mountainous slopes which relatively receive high intensity rainfalls. Mainly, large river 

streams all around the world starts its voyages from higher mountainous elevation towards 

the sea. In the beginning the path of the flow is so steep that it has enormous potential to 

erode the bed in the vertical direction by virtue of  which it develops V-shaped river section 

deep gorge or canyons. It has no flood plains and covers full width of its valley at all stages. 

A river at its young stage is characterized by presence of  rapids, water falls, steep and 

varying gradients and presence of lakes. 

At this stage the river is said to become mature after its youth stage. The slope at this stage is 

so reduced that it can no more cut the bed but starts widening. The sediment transportation 

capacity is just adequate to transport the sediments in the flow from upstream and the 

sediment material is derived from bank widening. 

If the sediment content in the flow is above the transporting capacity heavier sediments are 

settled on the bed upstream the profile slope. Conversely, if the transporting rate capacity is 

yet to be satisfied, the bed material picked up and the stream slope is reduced. Hence, 

matured streams adjust its profile slope delicately. It is in the stage of maturity that the stream 

flows sinusoidal or meandering path in plan.  

 

(a) 

(b) 

(c) (e) 

(d) 

 
Fig: 2.2 Sequence of Channel Changes with Decrease in Discharge and Sediment 
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2.3 STREAM SLOPE 

In general the longitudinal slope of a stream shows a continual decrease along its length. 

Examination of stream profiles would show that the slope is greatest near the source, 

decreasing more or less regularly as the river follows its course. Such reduction in slopes 

corresponds to a longitudinal profile which is concave upwards (Garde and Raju 2000). 

Several factors are responsible for this.  The reasons put forward by different scientists and 

engineers have been summarized in the following lines. 

Firstly, size of bed material being transported decreases in downstream direction due to 

abrasion (Garde and Raju 2000). Hack (1962) found slope varied as d0.60 for stream in 

Verginia and Meryland (USA). Shulits (1941) assumed that the stream slope is proportional 

to the size of the bed material and accordingly proposed a slope reduction equation (Eq:  2.1) 

                                                                                                                                                            (2.1)

  

So  and S are the slopes at x=0 and at any distance x being measured in downstream direction 

and α a slope reduction coefficient. Brush (1961) and Hack (1962) have shown that the 

stream slope is proportional to a negative power of the length of the stream up to that point 

indicating there by a decrease in slope along the length in conformity with the equation.  

Low water profiles of the river Mississippi between Fort Jackson and Cairo of the Ohio 

between Cairo- Pittsburg (USA) and of several rivers in Europe are found to confirm the Eq: 

(2.1)  (Garde and Raju 2000). 

Secondly, in humid regions, the discharge in a stream increases in the downstream direction 

due to inflow from the tributaries. Unless there is a corresponding increase in the sediment 

inflow, the stream would necessarily flatten to the extent required by the increased sediment 

and water discharge (Garde and Raju 2000). 

Thirdly, the sediment contribution of the upper region of a drainage basin is large compared 

to the run-off contribution to the stream flow. Which mean higher sediment contribution 

necessitating higher slope. While the lower region of the same drainage basin contributes 

smaller sediment quantity compared to its run-off discharge contribution signifying flatter 

slope requirement (Garde and Raju 2000). 

x
oeSS α−=
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Fourthly, on lower part of river sediments are usually finer and the streams are narrow with 

greater depth to width ratio leading to higher hydraulic efficiency requiring flatter slope 

(Garde and Raju 2000). 

Garde (1982) presented an analysis considering the change in the bed material size, discharge 

and sediment load in the direction of flow. 

He gave following relationships.  

                          [Variation in sediment size in the downstream direction]     (2.2) 

 Q= Q0eα
2

x           [Variation in discharge α 2  between 0.001 to 0.0078/ km for Indian   rivers] 

           (2.3) 

QT =QT 0eα
3

x        [Variation in Total sediment load discharge α 3  between 0.0006 to 0.002/ km  

for Indian rivers]                                                      (2.4) 

Where d=sediment size; d0 =Sediment size at x=0; x=Distance measured in flow direction; 

Q=Discharge; Q0 =Discharge at x=0; QT =Total sediment load discharge; QT0  = QT  at  x=0;  

α1, α2, α3 are coefficients.  

Combining the Eqs. 2.2), (2.3) and (2.4) with Kondap’s relation for width & depth and a 

sediment transport law,Garde (1982) showed that;  

                         (2.5) 

Where S0 and S are slopes at x equal to zero and at any value x. 

Thus, depending on the relatives values of α 1 , α 2  and α 3 it is possible to get a decreasing, 

increasing, or constant slope in a long reach. The fact has been observed by investigators 

such as Hack (1962). 

2.4 STREAM BED CHANGES DURING THE FLOODS 

On several alluvial streams, the stream bed elevation was seen to rise during flood while the 

bed was lower after the flood receded. On few other streams exactly opposite happenings 

have been recorded. These changes can be very rapid for example on the Missouri river at 

Omaha, Nebraska (USA), the bed was found to be scouring at a rate of 0.3 m per minute 

during a flood. (Garde and Raju 2000).  

In the simplest form to understand the process of bed profile variation one has to assess the 

inflow out flow of sediment discharge in the reach under the consideration. 

x1edd 0
α=

x)713.0426.0178.0(
0

123eSS ααα −−=
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a) If the incoming amount or the rate of the sediment upstream of the reach is higher than 

outgoing from the reach downstream it is obvious that the difference of the two quantities 

must have been dropped within the length of the reach. This process of rising of the bed 

level is called Aggradation. 

b) Conversely,   if the incoming amount or the rate of the sediment upstream  of the reach is 

lower than outgoing from the reach downstream then the difference of the two quantities 

must have been fulfilled by picking up the bed materials from within the length of the 

reach. This process of lowering of the bed level is called Degradation. 

2.5    OCCURRENCES OF AGGERADATIONS AND DEGRADATION 

2.5.1 AGGRADATION 

2.5.1.1 Occurrence of Aggradation 

Occurrence of aggradation is the most often observed phenomena on the upstream side of 

Dams, Barrages and any other disturbances caused by man made features or natural activities 

like barricade due to land slide. Because of disturbance in the equilibrium state of sediment 

flow in the stream causing reduction in the bed profile slope the sediment carrying capacity 

of the flow is weakened,  which leads to settling of the sediment  contained in the flow 

(Basically bed load) is retained in the zone upstream to such features.  

Other instance of aggradation of river bed is rising of the water level in the Lake or the sea 

which causes to reduce the slope of the water surface of river leading to a drop in the 

sediment transporting capacity and the result is aggradation.The situation of aggradation 

involves lower rate of sediment outflow than the inflow so that temporal gradient of bed level 

is positive. 

In the sediment continuity equation 

                                                                         

                                                                                                                                                                

                                                                                                                                                                  (2.6) 

Where λ = Porosity of the bed; qt= Rate of sediment inflow per unit width; z= Bed elevation. 

The consequences of aggradation more often reduce the conveyance capacity of the channel 

due to reduction in the flow area. 

0
x
q

)1(
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                                    Fig: 2.3  Aggradation and Equilibrium L-Profile 

Fig.: 2.3 shows how the process of aggradation reaches to final equilibrium condition. Where 

the aggradation takes place  because of increase in the sediment load in the flow above  its 

transport capacity part of the sediment of the bed load is disposed on the bed of the channel 

which gradually extends upstream and downstream (as shown in the figure continues) till 

new profile is attained. This new profile is the equilibrium state of the profile adequate to 

transport the incoming sediment discharge. 

      2.5.1.2     Effects of Aggradation 

a) Firstly, aggradation shrinks the active flow area of the river. Consequently, the flow is 

pushed to spread to wider coverage extending the flood affected area. 

b) In the reservoirs behind the storage dams, the filling up of the reservoir leads to decrease 

in the depth of the usable water. This necessitates fixing a dead level in the design of 

such structures.  

c) Bank erosion and river migration problems are more pronounced in the aggrading rivers 

like lower reaches of the river Brahmaputra. 

d) Aggradation of the river bed restricts the navigational opportunities of the river courses. 

e) The effect of aggradation extends the flood detention period over the flood plain during 

wet season causing water table to raise causing water logging (Garde and Raju 2000). 

2.5.2 DEGRADATION 

2.5.2.1 Occurrence of Degradation 

Most often degradation of streambed is observed to be lowered downstream of Large 

Capacity Reservoirs and Pools. Such degradation was observed in Cherry Creek USA where 
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the extent of lowering being measured was 4.9m. But wherever sound rock exposures are 

encountered the process of degradation have found retarded (Garde and Raju 2000). 

Another prominent location of occurrence of degradation is confluence of two or more rivers. 

Tributaries, generally steeper than the main stream but carry less run-off cause to lower the 

bed. At the instances, where  the water discharges in the stream increases due to mixing of 

tributaries with relatively sediment free water discharge enhances the sediment transport 

capacity degradation occurs subsequently. And one another cause of degradation is because 

of increase in water surface profile slope as the result of fall in level of a lake. This type of 

degradation was noted in White river in California USA (Garde and Raju 2000). 

Another location of degradation is where river has been started to flow along the cut-off 

developed in the meandered river (Fig: 2.4). The cut-off shortens the length of the river. In 

the beginning the cut-off has narrow width which gradually opens to accommodate the 

discharge through the channel. 

In the meandered rivers, the meandering 

process advances to a stage that the river 

no more can negotiate a long serpentine 

path which impose more resistance and take 

a shortest channel route at an incidence of 

high flow. 

            

2.5.2.2    Effect of Degradation 

Followings are some of the much pronounced effects both harmful as well as beneficial in the 

study of River Engineering. 

a)  Formation of Hydraulic Jump is apparently pushed downstream in spillways and 

Barrages due to downstream bed level lowering jeopardizing the stability of the 

structure. This situation was faced in the Wisconsin River at downstream of Praire Du 

San Dam (USA).  

b) Dams constructed in pervious strata exhibit increase seepage head due to increase in 

level difference between upstream and downstream water. The effect of this could be 

more uplift and seepage. 

Cut-off 

 
Fig: 2.4 Shortening of the River Flow Path 

due to Cut-off Development 
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c) While in case of lowering of tail water level downstream of a Power Generation point 

due to degradation leads to increase in available effective heads for more power 

generation. This has occurred at Paraire Du Sac Dam in the Wisconsin river USA. 

And also at Upperborn power house at Munich on the Saalach River. 

d) Lowering of river bed by degradation process increases the capacity of the river 

channel to carry the flood flow, by lowering the high flood level of the river. Creating 

an artificial degradation by construction of a big reservoir was a method that had been 

suggested as a possible solution to the flood problem of the Yellow river in China and 

Kosi River in the Indian Territory. Lowering of water level due to degradation 

reduces the height of the ground water table in the adjoining areas. 

e) Lowering of water level may expose pile foundation of bridges abutments and other 

structures to air and this may lead to deterioration of piling & stability endangering 

the whole structure. This problem has also been observed in many of the river bridges 

around on their downstream due to increased flow intensities aggravated by the 

construction of the bridges. 

f) Degradation also causes lowering of water level at the existing irrigation intakes and 

thus makes the diversion of water for irrigation more difficult. 

g) Degradation may cause substantial lowering of bed in navigable rivers and in extreme 

cases locks may become inoperative. Such difficulties have been encountered on a 

lock at the Wisconsin River (USA) and on the Mausa River (Holland) (Garde and 

Raju 2000).  

2.6 MATHEMATICAL MODELLING OF ALLUVIAL RIVERS 

Mathematical modelling of fluvial flow, sediment transport and morphological evolution 

started half a century ago and, to date, a variety of mathematical models have been developed 

and are in widespread use. However, the quality of mathematical river modelling remains 

uncertain because of: (a) poor assumptions in model formulations; (b) simplified numerical 

solution procedure; (c) the implementation of sediment relationships of questionable validity; 

and (d) the problematic use of model calibration and verification as assertions of model 

veracity. 

The ability to make accurate calculations of fluvial flow, sediment transport, the associated 

morphological evolution processes and water quality is vital in a period when the concern 
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over the river environment and the influence of human intervention is increasing. The 

interaction between sediment and turbulent flow is of fundamental interest in the field of two-

phase flow, and modelling the strongly coupled flow– sediment–morphology system provides 

a problem of considerable interest in computational fluid dynamics. Fluvial sediment 

transport process has been an increasingly important subject in the fields of water resources 

engineering, hydrology, geographical, geological, and environmental sciences, and more 

fundamentally fluid dynamics. 

Fluvial sediment transport poses great challenges for river scientists and engineers. The 

essence of the discipline is the interaction between the fluid (water) and the solid (dispersed 

sediment particles) phases. The exposure of the fluvial systems to the natural and variable 

environment (climatic, geological, ecological and social, etc.) adds to the complexity of the 

process of sediment transport and the resulting morphological evolution of rivers. 

The earlier efforts in mathematical river modelling were almost exclusively built on 

traditional fluvial hydraulics—that is, one-dimensional (1D) and two-dimensional (2D) Saint-

Venant equations. The 1D and 2D models are at present widely used in engineering practice; 

yet the future of mathematical river modelling will undoubtedly be the more advanced full 

3D computational fluid dynamics (Cao and Carling 2002). 

2.6.1 MAJOR ISSUES OF MATHEMATICAL MODELS FORALLUVIAL RIVERS 

Mathematical models of alluvial rivers can be categorized into two types: academic and 

applied. Academic models often deal with ‘how and why’ problems, being devoted to the 

conceptualization, mathematical formulation, solution (analytical or numerical) and 

interpretation of the flow, sediment transport, and morphological reaction. Improving the 

understanding of the mechanism of interaction among water, sediment and morphology is the 

major purpose of academic models. On the other hand, applied models are entirely concerned 

with quantitative modelling of the river systems in response to natural changes and human 

activities (e.g. construction of dams, bridges and flood control works). Currently, the most 

extensively used fluvial models are either 1D or depth-averaged (shallow) 2D, which are built 

upon traditional hydraulics principles—that is, Saint-Venant equations (Cao and Carling 

2002). 
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2.6.2 1D AND 2D COMPUTATIONAL HYDRAULICS MODELS 

This section mainly focuses on 1D hydraulic model, while most aspects examined here are 

pertinent to depth-averaged 2D cases. Based on cross-section-averaged variables, 1D 

numerical modelling of alluvial rivers has been most widely used in the fields of river 

training, hydropower generation, flood control and disaster alleviation, water supply, 

navigation improvement, as well as environment enhancement. HEC-6, ISIS-Sediment, 

GSTAR3D, CCHED, HEC-RAS and Mike11 are examples of a number of mathematical 

river models developed for fluvial water–sediment–morphology systems. The outputs of 

these models usually include sediment transport rates, changes in bed elevation and amounts 

of erosion and deposition throughout the river system considered. It has been recognized that 

1D models are appropriate primarily for long-term and long-reach situations, whereas these 

models have been less successful for local flow–sediment–morphology problems as can be 

anticipated. Prior studies in this connection have focused on such aspects as flow resistance 

relations (including parameter identification and optimization), grain sorting, non-equilibrium 

modules, numerical techniques, and effects of vertical distributions. In the present state of the 

art, it is a common practice to tune the friction factor and sediment transport formulae to 

reconcile the computational results with measurements. In this section the fundamental 

components of 1D model are examined. In particular the effects of simplified continuity 

equations and the asynchronous solution procedure are addressed, which have rarely been 

studied before except for a formative comparison by Krishnappan (Cao and Carling 2002).   

2.6.3 SIMPLIFIED CONTINUITY EQUATION FOR WATER-SEDIMENT MIXURE 

Alluvial flows over erodible beds can be distinguished from those over fixed beds in that the 

flow may entrain sediment from the bed or in contrast render the sediment carried by the flow 

to be deposited on the bed, which usually causes riverbed degradation or aggradation. This 

aspect is referred to as the bottom mobile (free) boundary problem. At the same time, the 

water–sediment mixture may have properties (density, etc.) different from clear water. In 

spite of these apparently known features of erodible-bed alluvial flows, it is often assumed 

that the rate of bed morphological evolution is of a lower order of magnitude than flow 

changes with adequately low sediment concentration. Accordingly, in existing 1D and 2D 

models, the water–sediment mixture continuity equation is almost exclusively assumed to be 

identical to that for a clear-water flow over a fixed bed without considering the alluvial 

riverbed mobility. This simplified mixture continuity equation is, in its form, the same as that 
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in the traditional Saint-Venant equations. The effect of this treatment appears to have been 

quantitatively addressed only by Correia et al(1992) and discussed by Rahuel(1993) 

Stevens(1988) claimed that bed mobility is important for complete coupling of water and 

sediment in discussing Lyn’s(1987) analysis. Worm leaton and Ghumman(1994) compared 

the performance of several simplified models, but exclusive of a fully coupled model on a 

rigorous basis. Therefore the effect of bed mobility on model performance has not been 

apparent (Cao and Carling 2002). 

2.6.4 SIMPLIFIED EQUATIONS IN ANALYTICAL MODELS 

It is interesting to note that there have been several analytical models for channel aggradation 

and degradation. Whereas providing an easy-to-use approach to evaluating the response of 

channels to the changing of a simple water and sediment hydrograph or base lowering, these 

models are based heavily on assumptions. First, the flow is assumed to be quasi-steady, 

leading to the elimination of local derivatives in the water–sediment mixture continuity and 

momentum equations. Second, in the momentum equation the nonlinear convective 

acceleration term is ignored, yielding a diffusion model for bed elevation evolution. A 

slightly modified type of models, namely hyperbolic models have been developed by partly 

including the non-linear convective effect using a perturbation technique. Finally in the 

sediment continuity equation the temporal concentration term is almost exclusively not taken 

into account in order to make the analytical solution tractable. One of the major difficulties in 

using these analytical models is the determination of the model coefficients involved. 

Additionally, it appears not encouraging to use these analytical models with highly variable 

hydrographs (complicated boundary conditions). More comments on these analytical models 

can be found in Zanre and Needham (1996). It is necessary to recognize that the momentum 

equation for the mixture flow over erodible bed differs from that of fixed-bed clear water 

flow. However, it seems a common practice to reduce it to a clear water flow momentum 

equation, recognizing the uncertainty inherent in the resistance relationship that must be 

incorporated to close the momentum equation (Cao and Carling, 2002). 

2.6.5 SEDIMENT TRANSPORT FUNCTIONS 

A function is necessary to determine sediment transport rate and, for heterogeneous 

sediments, the size distribution of bed material being transported. A large number of 

functions have been developed. However, most, if not all, of these functions have been 
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confirmed using specific laboratory and/or field measurement datasets, and none has been 

proved to be universally correct. Also it cannot be stated which function is the ‘best’ to use 

for a given situation. Distinct sediment transport functions will yield different answers, and 

normally the sediment rates/discharges are more sensitive to the choice of sediment function 

than the changes of river morphology. The latter concurs with the known feature that the 

time-scale of changes in flow variables (velocity, depth and sediment discharge, etc.) is 

normally significantly less than that of bed evolution. This aspect will be recalled later with 

respect to the asynchronous solution procedure commonly used in current mathematical river 

modeling practice. Therefore model developers and end-users have to judge the 

computational results based on their experience and their understanding of the basis on which 

existing sediment transport functions were derived and validated. Undoubtedly the modelling 

output is still subject to model developers and end-users—the lack of objectiveness is 

apparent. Using both laboratory and river datasets, Yang and Wan(1991) compared the 

performance of several sediment transport functions that are popularly used, and showed that, 

for river datasets considered, the accuracy in ascending order was Engelund–Hansen(1967), 

Laursen(1958), Colby(1964), Ackers–White(1973), Einstein(1950), Toffaletti(1969), and 

Yang(1973). At the same time Yang and Wan (1991) claimed that the rating does not 

guarantee that any specific function is better than others under all hydraulic and sediment 

cases. For gravel-bed rivers, the formulae of Einstein, Parker, and Ackers– White were 

shown to perform reasonably well(Gomez and Church,1989).To measure the applicability of 

sand transport functions, an ‘applicability index’ was proposed by Williams and Julien(1989) 

on the basis of river characteristics. These authors argue that developing a universal (at least 

to a certain extent) procedure to help choose the ‘optimum’ sediment transport function 

among the large pool of candidates will be one of the most realistic strategies to cope with the 

uncertainty due to sediment transport functions (Cao and Carling ,2002). 

2.6.6 MODEL CALIBRATION AND VERIFICATION/VALIDATION 

2.6.6.1 Model calibration 

A mathematical river model encompasses a number of parameters to be determined. One 

primary question is whether there is a unique combination of these parameters. From time to 

time the same (or similar) results are produced using different sets or combinations of model 

parameters. Usually there is no way to choose between these sets of parameters, other than to 

invoke extra-evidential considerations such as symmetry, simplicity, flexibility, personal, 
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political or metaphysical preferences as well as prejudices and financial considerations. A 

secondary question arises as to how the overall performance of modeling can be objectively 

judged in comparison with measurement. This is especially critical for 3D modeling as 

normally there are many megabytes of numbers (typically with over 50 000 nodes for a real 

river problem), and it is almost impossible for model developers and end-users to view, 

assimilate, interpret and present even a small fraction of the output. That way, the judgment 

of acceptable agreement with measured data is virtually on a basis of a limited portion of 

information, for example some selected verticals and cross-sections, etc. Known too many 

model developers and end-users is the fact that it is fairly feasible to reconcile the computed 

results to measurements within a local area by tuning the various parameters. Thirdly, it is 

hard to specify the initial conditions, whereas the computation can be sensitively influenced 

by the initial status in the non-linear systems; therefore the agreement between computed and 

measured results in general is largely not unbiased but subjective (Cao and Carling, 2002). 

2.6.6.2 Model verification and validation 

A verified model is useful as a prediction tool because of its demonstrated truth, and implies 

its reliability as a basis for decision-making. Equally correct is the term ‘validation’, which 

usually connotes legitimacy. It can, but does not necessarily denote an establishment of truth. 

Instead, it indicates the establishment of legitimacy, generally in terms of contracts, 

arguments, and methods. Validation means making legally valid, granting official sanction to 

or confirming the validity of something. A valid model contains no known errors or 

detectable flaws and is internally consistent. Verification is only possible in closed, rather 

than open systems, in which all components of the system are established independently, and 

are correct. Its application to natural systems is misleading. Alluvial river models are never 

closed systems, and therefore it is incorrect to use the term ‘verification’ for such models. 

Below are two specific reasons that make alluvial river models open. First, the model requires 

a number of input parameters that are not completely known. These input parameters are 

often embedded in turbulent closure modules, boundary conditions, sediment transport and 

entrainment functions as well as numerical discretization schemes, etc. Second, the 

observation and measurement of both independent and dependent quantities are laden with 

inferences and assumptions. Although many inferences and assumptions can, in some cases, 

be justified with experience, the degree to which the assumptions hold in new and 

complicated studies can never be established a priori. Alluvial river systems are complicated 
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in that turbulence is one of the last problems in classic physics, which remains to be solved, 

and this is further aggravated due to the presence of sediments. It is essential to recognize the 

restricted sense of the term ‘validation’. Legitimacy, official sanction, or being free of 

apparent errors and inconsistency does not necessarily mean truth or correctness, although 

truth or correctness is not precluded. It is misleading if the term validation is used to refer to 

actual modeling results in any particular realization. It is fairly popular for river modelers to 

use interchangeably the terms verification and validation. Thus they misleadingly imply that 

validation establishes model veracity. Even more critically, the term validation is used to 

suggest that the physical river phenomenon is accurately represented by numerical models. 

As stated above, there exist a lot of critical problems with the model calibration–

verification/validation phases, both logically and practically. The most significant problem 

comes with the verification/validation phase, where the model is claimed a success. This is, 

as a matter of fact, committing the basic logic error of affirming the model output. Oreskes et 

al.describe this as follows ‘To claim that a proposition (or model) is verified because 

empirical data match a predicted outcome is to commit the fallacy of affirming the 

consequent. If a model fails to reproduce observed data, then we know that the model is 

faulty in some way, but the reverse is never the case. Confirming observations do not 

demonstrate the veracity of a model or a hypothesis, they only support its probability.’ The 

misuse of the terms verification and validation in mathematical river modeling can be risky 

with respect to public interests. Often the decision-makers may not be experts in river 

hydraulics. It is the responsibility of model developers and end-users to correctly inform the 

decision-makers of what mathematical Models can realistically reflect, and more essentially 

the degree to which the modeling results can be relied upon (Cao and Carling, 2002). 

2.7 REVIEW OF THE EXISTING MODELS PERTAINING TO 

ALLUVIAL STREAMS 

2.7.1 DELFT HYDRAULIC LABORATORY MODEL 

DE Varies (1973) developed a mathematical model combining continuity and momentum 

equations along with Chezy’s equations for alluvial streams. In this model, the two dependent 

variables U(x, t) and Z(x, t) are computed in two separate steps. In this model, Cunge et al 

(1980) commented that computational time step cannot be chosen arbitrarily. This model is 

true for coarse sediment only. 
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2.7.2 CHEN’S MODEL 

Chen (1973) formulated a model based on Saint Venant’s continuity and momentum 

equations of unsteady flow of sediment-laden water. This model is capable of flood and 

sediment routing in a gradually varied flow channel. He used sediment load functions from 

Einstein’s Bed load function as well as Toffaleti’s function. Chen for the first time 

formulated a mathematical model that included sediment transport for generalized use. His 

works have proved to be a landmark in the field of open channel modeling for sediment-laden 

flow (Chen, 1973). 

2.7.3 DASS MODEL 

Dass (1975) developed multi-stream flow and compound stream flow models by adopting the 

uncoupled solution procedure to rout water and sediment in non-uniform channels with the 

capability to simulate bed level changes. The governing equations adopted by Dass are: 

    

 

 

                                                                         

 

  

 

 

Where; x=Horizontal distance along the channel; t= Time; Q=Total discharge of sediment 

laden water; A= Area of available flow; Ad = Area of deposit; ql = lateral inflow; As =Volume 

of sediment concentration in flow; ρ = Density of sediment laden water; p= Porosity of bed 

material; qs = Lateral inflow of sediment; Qs = Sediment Discharge. Sf = Energy slope; 

Mc=Factor dependent on bed slope; V= Mean velocity of flow;  

However, the validation of the model has been done in a hypothetical channel case (Dass, 

1975). 
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2.7.4 FLUVIAL MODELS (1978 and 1984) 

Chang and Hill (1976) developed this model in 1976.The same equations of St. Venant are 

solved. In the case of aggradation, the deposition is made starting from the lowest point in 

horizontal layers. A four point implicit finite difference schemes with uncoupled solution 

procedure is used to solve the equations.  Channel width adjustments are used to reflect 

lateral migration. Manning’s equation is used to represent resistance to flow. 

He also developed FLUVIAL 11 Model in 1984 which employs a space-time domain in 

which space domain is represented by the discrete cross-sections along the river reach and the 

time domain is represented by discrete time steps. The model uses the concept enunciated by 

Langbein and Leopold that the equilibrium channel represents a state of balance with a 

minimum rate of energy expenditure along the channel. Chang has considered the bank 

erodibility or coefficient of bank erosion to predict the bank changes. Fluvial 11 is 

undoubtedly a promising model for channel changes prediction. However the adoption of 

empirical bank erodibility factor appears to have constrained its universal applicability and 

may require considerable calibration efforts. This model cannot be applicable for a river of 

multi-channel configuration. 

2.7.5 HEC-6 MODEL 

This model has been developed by W.A.Thomas at Hydrologic Engineering Centre, U.S.A. in 

1977. There are five different options provided for the transport of sediment, viz Lausen’s 

equation, Toffaleti’s equation, Yang’s stream power function, Duboy’s equation and Qt = 

f(Q,S). The flow equation is the Manning’s equation. For numerical solution, uncoupled 

explicit finite difference scheme is used. Simulation of reservoir sedimentation using HEC-6 

was reported to be successful (HEC 2004). 

2.7.6 WATER RESOURCES MODELLING FROM DHI WATER AND ENVIRONMENT 

MIKE 11 - River and Channel Hydraulics  

MIKE 11 is a one-dimensional hydrodynamic software package including a full solution of 

the St. Venant equations, plus many process modules for advection-dispersion, water quality 

and ecology, sediment transport, rainfall-runoff, flood forecasting, real-time operations, and 

dam break modelling.  

The software can simulate flow and water level, water quality and sediment transport in 

rivers, irrigation canals, reservoirs and other inland water bodies. It is an engineering tool 
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with capabilities provided in a modular framework. It can be applied on numerous 

applications - from simple design tasks to large forecasting projects including complex 

structure operation policies. It allows you to integrate your river and floodplain modelling 

with watershed processes, detailed floodplain representation, sewer systems and coastal 

processes. MIKE 11 offers links to groundwater codes (Mike 11 User Guide, 1993).  

2.7.7 HEC-RAS - (Version-4.0, 2006) 

This is the latest version developed by US Army Corps of Engineers at Hydrologic 

Engineering Center. This is Next Generation of hydrologic engineering software which 

encompasses several aspects of hydrologic engineering including; river hydraulics; reservoir 

system simulation; flood damage analysis; and real time river forecasting for reservoir 

operations. The system is comprised of a graphical user interface (GUI), separate hydraulic 

analysis components, data storage and management capabilities, graphics and reporting 

facilities. The HEC-RAS system will ultimately contain three one dimensional hydraulic 

analysis components (i) Steady flow water surface profile (ii) Unsteady flow simulations (iii) 

movable boundary sediment transport computations. Apart from this software contains 

several hydraulic design features. This is capable of importing GIS data or HEC-2 data 

(Brunner, 2002; HEC-RAS Manual, 2006). 

It is an integrated system of software, designed for interactive use in a multi-tasking 

environment. The system is comprised of a graphical user interface, separate hydraulic 

analysis components, data storage and management capabilities, graphics and reporting 

facilities.  

The HEC-RAS system will ultimately contain three one-dimensional hydraulic analysis 

components for:  

 • Steady flow water surface profile computations  

 • Unsteady flow simulation  

 • Movable boundary sediment transport computations  

A key element is that all three components will use a common geometric data representation 

and common geometric and hydraulic computation routines. In addition to the three hydraulic 

analysis components, the system contains several hydraulic design features that can be 

invoked once the basic water surface profiles are computed (HEC-RAS Manual, 2006).  
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The review of existing models indicates that several models are available with different 

features. All the models use St. Venant’s equations and have different sediment predictors, 

energy slope relations and distribution of aggradation/degradation equations. A natural river 

has many complexities due to its size, flow variations, concentration of sediment and its 

properties, engineering works carried out on the river and other geographical, meteorological, 

social factors. Due to these reasons, no model can claim to have considered all the factors. 

Therefore, the models cannot have universal applicability. Hence, for modelling a particular 

river one should be very careful to choose a model, which is applicable according to the 

characteristics of that river. 

Hec-Ras (version 4.0) is latest in the family of the existing models for sediment transport & 

mobile bed modeling, so in this dissertation it has been envisaged to initiate work on this 

model to figure out the suitability for the specific purpose as well for specific applicability. 

2.8 GENERAL PHILOSOPHY OF THE MODELLING SYSTEMS IN 
HEC-RAS 

HEC-RAS is an integrated system of software, designed for interactive use in a multi-tasking, 

multi-user network environment. The system is comprised of a graphical user interface 

(GUI), separate hydraulic analysis components, data storage and management capabilities, 

graphics and reporting facilities. The system contains three one-dimensional hydraulic 

analysis components for: (1) steady flow water surface profile computations; (2) unsteady 

flow simulation; and (3) movable boundary sediment transport computations. A key element 

is that all three components use a common geometric data representation and common 

geometric and hydraulic computation routines. In addition to the three hydraulic analysis 

components, the system contains several hydraulic design features that can be invoked once 

the basic water surface profiles are computed (Brunner, 2002; Warner, 2002).  

2.8.1 OVERVIEW OF HYDRAULIC CAPABILITIES  

HEC-RAS is designed to perform one-dimensional hydraulic calculations for a full network 

of natural and constructed channels. The following is a description of the major hydraulic 

capabilities of HEC-RAS.  

Steady Flow Water Surface Profiles: This component of the modeling system is intended for 

calculating water surface profiles for steady gradually varied flow. The system can handle a 

single river reach, a dendritic system, or a full network of channels. The steady flow 
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component is capable of modeling subcritical, supercritical, and mixed flow regime water 

surface profiles.  

The basic computational procedure is based on the solution of the one-dimensional energy 

equation. Energy losses are evaluated by friction (Manning's equation) and 

contraction/expansion (coefficient multiplied by the change in velocity head). The 

momentum equation is utilized in situations where the water surface profile is rapidly varied. 

These situations include mixed flow regime calculations (i.e., hydraulic jumps), hydraulics of 

bridges, and evaluating profiles at river confluences (stream junctions).  

The effects of various obstructions such as bridges, culverts, weirs, spillways and other 

structures in the flood plain may be considered in the computations. The steady flow system 

is designed for application in flood plain management and flood insurance studies to evaluate 

floodway encroachments. Also, capabilities are available for assessing the change in water 

surface profiles due to channel improvements, and levees. 

Unsteady Flow Simulation: This component of the HEC-RAS modelling system is capable of 

simulating one-dimensional unsteady flow through a full network of open channels. The 

unsteady flow equation solver was adapted from Dr. Robert L. Barkau's UNET model (HEC, 

2004). This unsteady flow component was developed primarily for subcritical flow regime 

calculations. 

The hydraulic calculations for cross-sections, bridges, culverts, and other hydraulic structures 

that were developed for the steady flow component were incorporated into the unsteady flow 

module. Additionally, the unsteady flow component has the ability to model storage areas 

and hydraulic connections between storage areas, as well as between stream reaches. 

Sediment Transport/Movable Boundary Computations: This component of the modeling 

system is intended for the simulation of one-dimensional sediment transport/movable 

boundary calculations resulting from scour and deposition over moderate time periods 

(typically years, although applications to single flood events will be possible). 

The sediment transport potential is computed by grain size fraction, thereby allowing the 

simulation of hydraulic sorting and armoring. Major features include the ability to model a 

full network of streams, channel dredging, various levee and encroachment alternatives, and 

the use of several different equations for the computation of sediment transport. 

The model will be designed to simulate long-term trends of scour and deposition in a stream 

channel that might result from modifying the frequency and duration of the water discharge 
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and stage, or modifying the channel geometry. This system can be used to evaluate deposition 

in reservoirs, design channel contractions required to maintain navigation depths, predict the 

influence of dredging on the rate of deposition, estimate maximum possible scour during 

large flood events, and evaluate sedimentation in fixed channels (Brunner, 2002 ; Warner 

2002; Manual HEC-RAS,2006). 

2.8.2 THEORETICAL BASIS FOR ONE- DIMENSIONAL FLOW CALCULATION  

HEC-RAS is currently capable of performing one-dimensional water surface profile 

calculations for steady gradually varied flow in natural or constructed channels. Subcritical, 

supercritical, and mixed flow regime water surface profiles can be calculated.  

Equations for Basic Profile Calculations  

Water surface profiles are computed from one cross section to the next by solving the 

Energy equation with an iterative procedure called the standard step method. The Energy 

equation is written as follows: 

   

 

Where: Y1, Y2 = depth of water at cross sections; Z1, Z2 = elevation of the main channel 

inverts; V1, V2 = average velocities (total discharge/ total flow area); α1, α2 = velocity 

weighting coefficients; g = gravitational acceleration; he = energy head loss;    a diagram 

showing the terms of the energy equation is shown in Fig: 2.5. 
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                            Fig: 2.5 Representations of Terms in the Energy Equation 
  
The energy head loss (he) between two cross sections is comprised of friction losses and 

contraction or expansion losses. The equation for the energy head loss is as follows: 

 
  

The distance weighted reach length, L, is calculated as:  
 

 

 

Where: Llob, Lch, Lrob = cross section reach lengths specified for flow in the left overbank, 

main channel, and right overbank, respectively ; Qlob ,Qch ,Qrob =  arithmetic average of the 

flows between sections for the left overbank, main    channel, and right overbank, 

respectively  

Cross Section Subdivision for Conveyance Calculations  

The determination of total conveyance and the velocity coefficient for a cross section requires 

that flow be subdivided into units for which the velocity is uniformly distributed. The 

approach used in HEC-RAS is to subdivide flow in the overbank areas using the input cross 

section n-value break points (locations where n-values change) as the basis for subdivision. 

Conveyance is calculated within each subdivision from the following form of Manning’s 

equation (based on English units):  
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Where: K = conveyance for subdivision; n = Manning's roughness coefficient for subdivision  

A = flow area for subdivision; R = hydraulic radius for subdivision (area / wetted perimeter)  

 

The program sums up all the incremental conveyances in the overbanks to obtain a 

conveyance for the left overbank and the right overbank. The main channel conveyance is 

normally computed as a single conveyance element. The total conveyance for the cross 

section is obtained by summing the three subdivision conveyances (left, channel, and right). 

In general, it is felt that the HECRAS default method is more commensurate with the 

Manning equation and the concept of separate flow elements (Brunner, 2002).  

Composite Manning's n for the Main Channel  

Flow in the main channel is not subdivided, except when the roughness coefficient is changed 

within the channel area. HEC-RAS tests the applicability of subdivision of roughness within 

the main channel portion of a cross section, and if it is not applicable, the program will 

compute a single composite n value for the entire main channel. The program determines if 

the main channel portion of the cross section can be subdivided or if a composite main 

channel n value is utilized. 

The computed composite nc should be checked for reasonableness. The computed value is 

the composite main channel n value in the output and summary tables.  

Evaluation of the Mean Kinetic Energy Head  

Because the HEC-RAS software is a one-dimensional water surface profiles program, only a 

single water surface and therefore a single mean energy are computed at each cross section. 

For a given water surface elevation, the mean energy is obtained by computing a flow 

weighted energy from the three subsections of a cross section (left overbank, main channel, 
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and right overbank). Figure 2.6 below shows how the mean energy would be obtained for a 

cross section with a main channel and a right overbank (no left overbank area).  

  
              
          
 
 
 
 
 
 
      
 
 

  
V1 = mean velocity for sub area 1, V2 = mean velocity for sub area 2                                    

                                 Fig: 2.6 Example of How Mean Energy is Obtained  
 

To compute the mean kinetic energy it is necessary to obtain the velocity head weighting 

coefficient alpha. Alpha is calculated as follows:  

 

Mean Kinetic Energy Head = Discharge-Weighted Velocity Head  

 
  
 

═ 
 
 
 
 
 

 

 

 

        In general: 

 

The velocity coefficient, α, is computed based on the conveyance in the three flow elements: 

left overbank, right overbank, and channel. It can also be written in terms of conveyance and 

area as in the following equation: 
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Where: At = total flow area of cross section; Alob, Ach, Arob = flow areas of left overbank, 

main channel and right overbank, respectively; Kt  = total conveyance of cross section; Klob, 

Kch, Krob = conveyances of left overbank, main channel and right overbank, respectively. 

Friction Loss Evaluation 

Friction loss is evaluated in HEC-RAS as the product of Sf and L (Eq: 2.11), where Sf is the 

representative friction slope for a reach and L is defined by Eq:  (2.12). The friction slope 

(Slope of the energy grade line) at each cross section is computed from Manning’s equation 

as follows: 

 
 
  
 

Alternative expressions for the representative reach friction slope (Sf) in HEC-RAS are as 
follows:  

 Average Conveyance Equation  
 

 

Average Friction Slope Equation  
 

  
Geometric Mean Friction Slope Equation   

 

             
             Harmonic Mean Friction Slope Equation  

  
  
 

         (2.16) 

         (2.17) 

         (2.18) 

         (2.19) 

         (2.20) 

         (2.21) 

3
t

2
rob

3
rob

2
ch

3
ch

2
lob

3
lob2

t

K
A
K

A
K

A
K

)(A 







++

=α

2

f K
QS 



=

2

21

21
f KK

QQS 







+
+

=

2
SSS 2f1f

f
+

=

2f1ff SSS ×=

2f1f

2f1f
f SS

)S(S2S
+
×

=



 35 

Equation (2.21) is the “default” equation used by the program; that is, it is used automatically 

unless a different equation is requested by input.  The program also contains an option to 

select equations, depending on flow regime and profile type (e.g., S1, M1, etc) 

Contraction and Expansion Loss Evaluation  

Contraction and expansion losses in HEC-RAS are evaluated by the following equation:  

 

  
                       
Where: C = the contraction or expansion coefficient  

The program assumes that a contraction is occurring whenever the velocity head downstream 

is greater than the velocity head upstream.  Likewise, when the velocity head upstream is 

greater than the velocity head downstream, the program assumes that a flow expansion is 

occurring.  

Steady Flow Program Limitations  

The following assumptions are implicit in the analytical expressions used in the current 

version of the program:  

1. Flow is steady.     

2. Flow is gradually varied. (Except at hydraulic structures such as: bridges; culverts; 

and weirs.  At these locations, where the flow can be rapidly varied, the momentum 

equation or other empirical equations are used.)  

3. Flow is one dimensional (i.e., velocity components in directions other than the 

direction of flow are not accounted for).  

4. River channels have “small” slopes; say less than 1:10.  

Flow is assumed to be steady because time-dependent terms are not included in the energy 

equation (Eq: 2.10).  Flow is assumed to be gradually varied because Eq: (2.10) is based on 

the premise that a hydrostatic pressure distribution exists at each cross section.  At locations 

where the flow is rapidly varied, the program switches to the momentum equation or other 

empirical equations.  Flow is assumed to be one-dimensional because Eq: (2.11) is based on 

the premise that the total energy head is the same for all points in a cross section.  Small 
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channel slopes are assumed because the pressure head, which is a component of Y in Eq: 

(2.10), is represented by the water depth measured vertically.  

The program has the capability to deal with movable boundaries (i.e., sediment transport) and 

requires that energy losses be definable with the terms contained in Eq: (2.11).  

Uniform Flow Computations  

For preliminary channel sizing and analysis for a given cross section, a uniform flow editor is 

available in HEC-RAS.  The uniform flow editor solves the steady-state, Manning’s equation 

for uniform flow.  The five parameters that make up the Manning’s equation are channel 

depth, width, slope, discharge, and roughness.    

Q = f (A, R, S, n)       

Where: Q = Discharge; A = Cross sectional area; R = Hydraulic radius; S = Energy slope  

 n = Manning’s n value  

When an irregularly shaped cross section is subdivided into a number of sub areas, a unique 

solution for depth can be found.   And further, when a regular trapezoidal shaped section is 

used, a unique solution for the bottom width of the channel can be found if the channel side  

slopes are provided. The dependant variables A, and R, can then be expressed in the Manning 

equation in terms of depth, width and side slope as follows:  

Q = f(Y, W, z, S, n)       

Where: Y = Depth; W= Bottom width; z = Channel side slope    

By providing four of the five parameters, HEC-RAS will solve the fifth for a given cross 

section.  When solving for width, some normalization must be applied to a cross section to 

obtain a unique solution, therefore a trapezoidal or compound trapezoidal section with up to 

three templates must be used for this situation.  

 Cross Section Subdivision for Conveyance Calculations  

In the uniform flow computations, the HEC-RAS default Conveyance Subdivision Method is 

used to determine total conveyance.  Sub areas are broken up by roughness value break points 

and then each sub area’s conveyance is calculated using Manning’s equation.  Conveyances 

are then combined for the left overbank, the right overbank, and the main channel and then 

further summed to obtain the total cross section conveyance.   

         (2.23) 

         (2.24) 
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Bed Roughness Functions  

Because Manning’s n values are typically used in HEC-RAS, the uniform flow feature allows 

for the use of a number of different roughness equations to solve for n.  HEC-RAS allows the 

user to apply any of these equations at any area within a cross section; however, the 

applicability of each equation should be noted prior to selection.  Manning equation method, 

one n value or a range of n values is prescribed across the cross section and then the 

Manning’s equation is used to solve for the desired parameter.  

Sediment Transport Capacity  

The sediment transport capacity function in HEC-RAS has the capability of predicting 

transport capacity for non-cohesive sediment at one or more cross sections based on existing 

hydraulic parameters and known bed sediment properties.  It does not take into account 

sediment inflow, erosion, or deposition in the computations.  Classically, the sediment 

transport capacity is comprised of both bed load and suspended load, both of which can be 

accounted for in the various sediment transport predictors available in HEC-RAS.  Results 

can be used to develop sediment discharge rating curves, which help to understand and 

predict the fluvial processes found in natural rivers and streams.    

 Sediment Gradation   

Sediment transport rates are computed for the prescribed hydraulic and sediment parameters 

for each representative grain size.  Transport capacity is determined for each grain size as if 

that particular grain size made up 100% of the bed material.  The transport capacity for that 

size group is then multiplied by the fraction of the total sediment that that size represents.  

The fractional transport capacities for all sizes are summed for the total sediment transport 

capacity.    

                                               

  

 

Where:  gs = Total sediment transport;   gsi = Sediment transport for size class i; Pi = Fraction 

of size class i in the sediment;   n = Number of size classes represented in the gradation. 

Because different sediment transport functions were developed differently with a wide range 

of independent variables, HEC-RAS gives the user the option to select how depth and width 
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are to be computed.  The HEC-6 method converts everything to an effective depth and width. 

However, many of the sediment transport functions were developed using hydraulic radius 

and top width, or an average depth and top width.  For this reason, HEC-RAS allows the user 

to designate which depth/width method to use.  If the default selection is chosen, then the 

method consistent with the development of the chosen function will be used.  For irregular 

cross section shapes, HEC-RAS uses the effective depth/effective width or hydraulic 

radius/top width as the default.  Also available for use is the hydraulic depth, which is used to 

represent the average depth and is simply the total area of the section divided by the top 

width.   

Sediment Transport Functions   

Because different sediment transport functions were developed under different conditions, a 

wide range of results can be expected from one function to the other.  Therefore it is 

important to verify the accuracy of sediment prediction to an appreciable amount of measured 

data from either the study stream or a stream with similar characteristics.  It is very important 

to understand the processes used in the development of the functions in order to be confident 

of its applicability to a given stream.    

Typically, sediment transport functions predict rates of sediment transport from a given set of 

steady-state hydraulic parameters and sediment properties. Some functions compute bed-load 

transport, and some compute bed-material load, which is the total load minus the wash load 

(total transport of particles found in the bed).  In sand-bed streams with high transport rates, it 

is common for the suspended load to be orders of magnitude higher than that found in gravel-

bed or cobbled streams.  It is therefore important to use a transport predictor that includes 

suspended sediment for such a case.      

The following sediment transport functions which are also available in HEC-RAS:  

• Ackers-White (1973) 

• Engelund-Hansen (1967) 

• Laursen (1958) 

• Meyer-Peter Müller (1948) 

• Toffaleti (1969) 

• Yang (1973) 
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These functions were selected based on their validity and collective range of applicability.  

All of these functions, except for Meyer-Peter Müller(1948), are compared extensively by 

Yang and Wan (1991) over a wide range of sediment and hydraulic conditions.  Results 

varied, depending on the conditions applied.  The Meyer-Peter Müller(1948) and the bed-load 

portion of the Toffaleti(1969) function were compared with each other by Amin and Murphy 

(1981).  They concluded that Toffaleti(1969) bed-load procedure was sufficiently accurate for 

their test stream, whereby, Meyer-Peter Müller(1948) was not useful for sand-bed channels at 

or near incipient. A short description three main sediment predictors is summarized below. 

(Brunner, 2002; Karamisheva(2006).   

  Ackers-White(1973):  The Ackers-White transport function is a total load function 

developed under the assumption that fine sediment transport is best related to the turbulent 

fluctuations in the water column and coarse sediment transport is best related to the net grain 

shear with the mean velocity used as the representative variable.  The transport function was 

developed in terms of particle size, mobility, and transport.  

A dimensionless size parameter is used to distinguish between the fine, transitionary, and 

coarse sediment sizes.  Under typical conditions, fine sediments are silts less than 0.04 mm, 

and coarse sediments are sands greater than 2.5 mm.  Since the relationships developed by 

Ackers-White are applicable only to non-cohesive sands greater than 0.04 mm, only 

transitionary and coarse sediments apply.   Original experiments were conducted with coarse 

grains up to 4 mm; however the applicability range was extended to 7 mm.    

This function is based on over 1000 flume experiments using uniform or near-uniform 

sediments with flume depths up to 0.4 m.  A range of bed configurations was used, including 

plane, rippled, and dune forms, however the equations do not apply to upper phase transport 

(e.g. anti-dunes) with Froude numbers in excess of 0.8.   The general transport equation for 

the Ackers-White function for a single grain size is represented by:  

                              

  

 

Where: X = Sediment concentration, in parts per part;  Ggr = Sediment transport parameter ;  s 

= Specific gravity of sediments ;  ds = Mean particle diameter ;  D = Effective depth ;  u* = 

Shear velocity ;  V = Average channel velocity ;  n = Transition exponent, depending on 

             (2.26) n*

sgr

V
uD

sdG
X









=









−= 1

A
F

CG gr
grand 



 40 

sediment size ;  C = Coefficient ;  Fgr = Sediment mobility parameter ;  A = Critical sediment 

mobility parameter  

A hiding adjustment factor was developed for the Ackers-White method by Profitt and 

Sutherland (1983), and is included in RAS as an option.  The hiding factor is an adjustment to 

include the effects of a masking of the fluid properties felt by smaller particles due to 

shielding by larger particles.  This is typically a factor when the gradation has a relatively 

large range of particle sizes and would tend to reduce the rate of sediment transport in the 

smaller grade classes (Brunner, 2002).    

Engelund-Hansen(1967):  The Engelund-Hansen function is a total load predictor which 

gives adequate results for sandy rivers with substantial suspended load.   It is based on flume 

data with sediment sizes between 0.19 and 0.93 mm.  It has been extensively tested, and 

found to be fairly consistent with field data.    

The general transport equation for the Engelund-Hansen function is represented by:  

  

                  

 

 

Where: gs = Unit sediment transport; γ = Unit wt of water; γs = Unit wt of solid particles; V = 

Average channel velocity; τo = Bed level shear stress; d50 = Particle size of which 50% is 

smaller  

Yang(1973):  Yang’s method (1973) is developed under the premise that unit stream power is 

the dominant factor in the determination of total sediment concentration.  The research is 

supported by data obtained in both flume experiments and field data under a wide range 

conditions found in alluvial channels.  Principally, the sediment size range is between 0.062 

and 7.0 mm with total sediment concentration ranging from 10 ppm to 585,000 ppm.  

Channel widths range from 0.44 to1746 ft, depths from 0.037 to 49.4 ft, water temperature 

from 0o to 34.3°Celsius, average channel velocity from 0.75 to 6.45 fps, and slopes from 

0.000043 to 0.029 (Yang and Wan ,1991).  

Yang (1984) expanded the applicability of his function to include gravel-sized sediments.  

The general transport equations for sand and gravel using the Yang function for a single grain 

size is represented by: (Garde and Raju, 2000; Brunner, 2002) 
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For gravel d 

Where: Ct = Total sediment concentration, ω = Particle fall velocity,   dm  =Med. particle 

diameter          ν = Kinematic viscosity,    u* = Shear velocity, V = Average channel velocity, 

S = Energy gradient                                      

2.8.3 THEORETICAL BASIS FOR SEDIMENT CALCULATIONS (HEC, 1981) 

Sediment transport rates are calculated for each flow in the hydrograph for each grain size. 

The transport potential is calculated for each grain size class in the bed as though that size 

comprised 100% of the bed material. Transport potential is then multiplied by the fraction of 

each size class present in the bed at that time to yield the transport capacity for that size class. 

These fractions often change significantly during a time step; therefore an iteration technique 

is used to permit these changes to affect the transport capacity. The basis for adjusting bed 

elevations for scour or deposition is the Exner equation. 

2.8.3.1 Equation for Continuity of Sediment Material Control Volume 

Each cross section represents a control volume. The control volume width is usually equal to 

the movable bed width and its depth extends from the water surface to the top of bedrock or 

other geological control beneath the bed surface. In areas where no bedrock exists, an 

arbitrary limit (called the "model bottom") is assigned (Fig: 2.7). The control volume for 

cross section 2 is represented by the heavy dashed lines. The control volumes for cross 

sections 1 and 3 join that for cross section 2, etc. 
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 −








−−

+−−=

ωωων
ω

ων
ω

cr
*

m

*
m

t

VVSlogulog314.0dlog409.0799.1

ulog457.0dlog286.0435.5logC







 −








−−

+−−=

ωωων
ω

ων
ω

Scr
*

m

*
m

t

VVSlogulog282.0dlog305.0784.2

ulog816.4dlog633.0681.6logC
         (2.29) 



 42 

 
  
 
 
 
 
 
 
 
 
 
 
 
  
     Fig:  2.7 Control Volume for Bed Material 
 
 

2.8.3.2 Exner Equation 

The above description of the processes of scour and deposition must be converted into 

numerical algorithms for computer simulation. The basis for simulating vertical movement of 

the bed is the continuity equation for sediment material (Eq: 2.30) 

 
 
  
 

Where: Bo = width of movable bed; t = time; G = average sediment discharge rate during 

time step Δt; x = distance along the channel; Ys = depth of sediment in control volume 

 
  
 
 
 
 
 
 
 
 
 
 
 
                                                  Fig: 2.8 Computation Grid 
 

Equations (2.31) and (2.32) represent the Exner Equation expressed in finite difference form 

for point P using the terms shown in Fig: 2.8. 
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Where: Bsp = width of movable bed at point P; Gu, Gd = sediment loads at the upstream and 

downstream cross sections, respectively; Lu, Ld = upstream and downstream reach lengths, 

respectively, between; cross sections Ysp, Y′sp = depth of sediment before and after time step, 

respectively, at point P; 0.5 = the "volume shape factor" which weights the upstream and 

downstream reach lengths; Δt = computational time step. 

The initial depth of bed material at point P defines the initial value of Ysp. The sediment load, 

Gu, is the amount of sediment, by grain size, entering the control volume from the upstream 

control volume. For the upstream-most reach, this is the inflowing load boundary condition 

provided by the user. The sediment leaving the control volume, Gd, becomes the Gu for the 

next downstream control volume. The sediment load, Gd, is calculated by considering the 

transport capacity at point P, the sediment inflow, availability of material in the bed, and 

armoring. The difference between Gd and Gu is the amount of material deposited or scoured 

in the reach labeled as "computational region" on Fig: 2.8, and is converted to a change in 

bed elevation using Eq: 2.32. 

The transport potential of each grain size is calculated for the hydraulic conditions at the 

beginning of the time interval and is not recalculated during that interval. Therefore, it is 

important that each time interval be short enough so that changes in bed elevation due to 

scour or deposition during that time interval do not significantly influence the transport 

potential by the end of the time interval. Fractions of a day are typical time steps for large 

water discharges and several days or even months may be satisfactory for low flows. The 

amount of change in bed elevation that is acceptable in one time step is a matter of judgment. 

Good results have been achieved by using 10% of the water depth, whichever is less, as the 

allowable bed change in a computational time interval. The gradation of the bed material, 

however, is recalculated during the time interval because the amount of material transported 

is very sensitive to the gradation of bed material. If transport capacity is greater than the load 

entering the control volume, available sediment is removed from the bed to satisfy continuity 

(HEC, 1981). 
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CHAPTER-3 

DESCRIPTION OF STUDY AREA 

3.1 INTRODUCTION 

Stretching within the basin periphery  of 82°E to 97° 50' E longitudes and 25° 10' to 31° 30' 

N latitudes the river Brahmaputra envelopes a drainage area of 580,000 sq.km  and 

recognized  to be one of the most braided channel river. The hugeness of the river system in 

terms of the drainage area and the lengths it encompasses may be realised from its aerial 

extent as under. 

 

                      Table: 3.1 The Aerial Distribution of the Total Drainage Basin. 

 

Originating in a great glacier mass at an altitude of 5,300 m just south of the lake Konggyu 

Tso in the Kailas range, about 63 km southeast of Mansarovar lake in southern Tibet at an 

elevation of 5300m, the Brahmaputra flows through China (Tibet), India and Bangladesh for 

a total distance of 2880 km, before emptying itself into the Bay of Bengal through a joint 

channel with the Ganga. It is known as the Tsangpo in Tibet (China), the Siang or Dihang in 

Arunachal Pradesh (India), the Brahmaputra in Assam (India) and the Jamuna, Padma, and 

Meghana in Bangladesh.  

Before entering India, the river flows in a series of big cascades as it rounds the Namcha-

Barwa peak. The river forms almost trough receiving the flows of its tributaries both from 

North and South. The river, with its Tibetan name Tsangpo in the uppermost reach, flows 

through  

Country 
Basin area 

Channel 
Length 

(Km2) (Km) 
I. Tibet (China) 293,000 1,625 
2. Bhutan 45,000 - 
3. India 194,413 918 
 (a) Arunachal Pradesh 81,424 278 
(b) Assam 70,634 640 
(c) Nagaland 10,803 - 
(d) Meghalaya 11,667 - 
(e) Sikkim 7,300 - 
(f) West Bengal 12,585 - 
4. Bangladesh 47,000 337 
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southern Tibet for about 1,625 km eastward and parallel to tributaries, viz., the Nau Chhu, the 

Tsa Chhu, the Men Chhu, the Charta Tsangpo, the Raga Tsangpo, the Tong Chhu, the Shang 

Chhu, the Gya Chhu, the Giamda Chhu, the Po Tsangpo and the Chindru Chhu and the right 

bank tributaries, viz. the Kubi, the Kyang, the Sakya Trom Chhu, the Rhe Chhu, the Rang 

Chhu, the Nyang Chhu, the Yarlang Chhu, and the Trulung Chhu join the river along its 

uppermost reach. At the extreme eastern end of its course in Tibet the Tsangpo suddenly 

enters a deep narrow gorge at Pe, where in the gorge section the river has a gradient ranging 

from about 4.3 to 16.8 m/km (Fig. 3.2).  

The river enters in India near Tuning in Arunachal Pradesh. After travelling for a distance of 

278 km up to Kobo, it meets with two rivers the Dibang and the Lohit in Assam near Kobo. 

Below this confluence point, the river is known by the name of the Brahmaputra. It passes 

through Assam into Bangladesh and at last it meets with the Ganga near Goalundo in 

Bangladesh before joining the Bay of Bengal. Its total length is 2,880 km comprising of 1,625 

km in Tibet, 918 km in India and 337 km in Bangladesh. It is also one of the most braided 

rivers in the world with width variation from 1.2 km at Pandu near Guwahati to about 18.13 

km near Gumi few km distances downstream to this point.  

Fig: 3.1 Location Map of the Brahmaputra River in Assam, India (Sarma, 2005) 
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Traversing through deep narrow gorges of the Himalayan terrain the Tsangpo takes a 

southward turn and enters Indian Territory at an elevation of 660 m. The river then enters the 

State of Assam (India) taking two important tributaries the Dibang and the Lohit. At the exit 

of the gorge the slope of the river is only 0.27 m/km. At the head of the valley near Dibrugarh 

the river has a gradient of 0.09-0.17 m/km, which is further reduced to about 0.1 m/km near 

Pandu (Fig: 3.1). The mighty Brahmaputra rolls down the Assam valley from east to west for 

a distance of 640 km up to Bangladesh border (Table 3.1). 

3.2  LONGITUDINAL SECTION OF THE BRAHMAPUTRA RIVER 

The longitudinal section of the Brahmaputra River from its origin to the outfall point is 

depicted in Fig: 3.2.  

 

 
 
 
 
 
 
 
 
 
          

 

 

 

                   Fig: 3.2 longitudinal profile of the Brahmaputra River (Sarma, 2005) 

3.3 THE BRAHMAPUTRA RIVER SYSTEM 

The Brahmaputra River, termed as a moving ocean (Wapcos, 1993), is an antecedent snow-

fed large Trans-Himalayan river which flows across the rising young Himalayan range. 

Considerable variations in width, gradient, discharge and channel pattern occur throughout its 

course. Geologically, the Brahmaputra is the youngest of the major rivers of the world and 

unique in many respects. It happens to be a major river for three countries, viz., China, India 

and Bangladesh. The river basin of the Brahmaputra is bounded on the north by the Kailas 

and Nyen- Chen-TanghIa ranges of mountains; on the east by the Salween river basin and the 

Patkai range running along the Indo-Myanmar border; on the south by the Nepal Himalayas, 
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the Naga and Barail ranges and the Meghalaya Plateau; and on the west by the Ganga river 

basin (Sarma, 2005). 

The maximum meridional extent of the basin is 1,540 km along 29°30' N latitude and 

maximum latitudinal extent is 780 km along 90° E longitude. The total length of the river is 

2,880 km (Table 3.1). Several tributaries join the river all along its length. The average 

annual runoff of the Brahmaputra at Pasighat, Pandu and Bahadurabad in Bangladesh is 

186,290,494,357 and 589,000 million cubic metre respectively. The monsoon flow of the 

Brahmaputra at Tesla Dzong in Tibet is 36.27% of the flow at Pasighat (Wapcos, 1993). 

Throughout its course within India, the Brahmaputra is braided with some well defined nodal 

points where the river width is narrow and restricted within stable banks. All along its course 

in the valley, abandoned wetlands and back swamps are common. The river carries about 735 

million metric tons of suspended sediment loads annually. 

The Indian section of the Brahmaputra River receives innumerable tributaries flowing down 

the northern, north-eastern and southern hill ranges. The mighty Brahmaputra along with the 

well-knit network of its tributaries controls the geomorphic regime of the entire region, 

especially the Brahmaputra valley. In the north, the principal tributaries are the Subansiri, the 

Jia Bhareli, the Dhansiri, the Puthimari, the Pagladiya, the Manas and the Champamati. 

Amongst these, the Subansiri, the Jia Bhareli and the Manas are the Trans-Himalayan Rivers. 

The principal south bank tributaries are the Burhi Dehing, the Disang, the Dikhow, the 

Dhansiri (south), the Kopili and the Krishnai.  

It is observed that three Trans-Himalayan tributaries, the Subansiri, the Jia Bhareli and the 

Manas on the north have a basin more than 10,000 km2, i.e., only two south bank tributaries 

namely the Dhansiri and the Kopili form a basin area more than 10,000 km2. The Manas 

River combined with the Aie and the Beki rivers drains biggest area of 41, 350 km2. The 442 

km long Subansiri River and the 360 km long Burhi Dehing River are considered longest, 

respectively, among the north-bank and south bank tributaries (Water Year book, CWC, 

2002). In terms of the average annual discharge, the Subansiri carries a discharge of 755-771 

m3/sec, which ranks first among all the important tributaries. The Jia Bhareli and the Manas 

in the north carrying an average annual suspended sediment load of 2,013 ha.m and 2,166 

ha.m, respectively, are the leading rivers in the case of sediment discharge (11). Of all the 

north and south bank tributaries, as many as fourteen have sediment yields in excess of 500 

tons/ km2/year, the highest being 4,721 tons/km2 /year (Sankhua,2006).  
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3.4 HYDROLOGIC AND PHYSIOGRAPHIC CHARACTERISTICS 
OF THE BRAHMAPUTRA RIVER 

 The statistical details of the river are described below (Sankhua, 2006): 

(a) Total basin area from its source to its confluence with Ganga at Goalundo in Bangladesh 

          580,000 km2 

(i) Basin area within Tibet        293,000 km2 
(ii) Basin area in Bhutan and India                  240,000 km2 
(iii) Basin area in Bangladesh                   47,000 km2 

(b) Length from its source to outfall in Bay of Bengal                2,880 km 

(c) Gradient  

(i) Reach within Tibet         1 in 385 
(ii) Reach between Indo-China border and Kobo in India       1 in 515 
(iii) Reach between Kobo and Dhubri      1 in 6,990  
(iv) Reach within Bangladesh 

  First 60 km from Indian Border                  1 in 11,340 
 Next 100 km stretch        1 in 12,360 

 Next 90 km stretch        1 in 37,700 
(d)  Observed discharge 

                     (i)     Maximum observed discharge at Pandu (on 23.8.1962)   72,727 m3/sec 
                    (ii)    Minimum observed discharge at Pandu (on 20.2.1968)    1,757 m3/sec 
                   (iii)    Average dry season discharge at Pandu      4,420 m3/sec 
                   (iv)    Normal annual rainfall within basin ranges between 2,125 mm in Kamrup  
                             District of Assam and 4,142 mm in Tirap district of Arunachal Pradesh.  

3.5     GEOLOGY AND GEOMORPHOLOGY 

The Brahmaputra basin in India, comprising of varying geologic and geomorphic 

characteristics, represents its peculiar physiographic make-up. The basin is bounded by the 

eastern Himalayas on the north and east, the Naga-Patkai ranges on the northeast and 

Meghalaya Plateau and Mikir hills on the south. The region can be geologically and 

tectonically divided into four major zones, viz. the Himalayan folded and Tertiary hills and 

mountains, the Naga-Patkai ranges, the Meghalaya Plateau and Mikir hills and the 

Brahmaputra valley in Assam.  

The Himalayan zone comprises of three topographic units that rise progressively to the north. 

The lowermost ranges, called sub-Himalayas with an average elevation of 1,000 m, consist 

mainly of Tertiary sand stones, and are conspicuous by the presence of many raised, 

relatively young terraces (Goswami and Das, 2000). The middle Himalayas, having an 
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average elevation of 4,000 m are underlain by lower Gondwana (Palaeozoic) deposits 

comprising shales, slates, and phyllites overlain by a thick horizon of basaltic rocks. The 

greater Himalayas with an average elevation of 6,000 m consist primarily of granites and 

gneisses (Goswami and Das, 2000). The Himalayan Mountains with their syntaxial N-E 

bends originated out of the Tethyan Geo-synclin) and are essentially composed of loose 

sedimentary rocks. The sub Himalayas and the lower Himalayas are characterized by 

piedmont zones, low discontinuous ridges, low linear ridges, high rugged hills and upland 

valley depressions. 

The Patkai-Naga ranges stand on the eastern and south-eastern border of the Brahmaputra 

valley in Assam. These ranges, with an average elevation of 1,000 m, are composed of 

Tertiary sediments and characterized by the presence of a large number of active faults. This 

zone consists of piedmont plains, anticlinal ridges and synclinal valleys with terraced alluvial 

fills, undifferentiated sharp ridges and narrow valleys, upland valley depressions and plateau 

remnants. The Meghalaya plateau and the Mikir hills attaining an elevation ranging from 600 

m to 1,800 m are made up primarily of gneisses and schist. This part, being a rigid mass, 

belongs to the Deccan plateau of the stable Indian peninsular block of Pre-Cambrian age. It is 

characterized by plateau remnants, inselbergs, deeply dissected uplands with faulted 

monoclines of Tertiary cover, denuded hills, basement controlled structural ridges covered 

with Tertiary rocks and upland valley depressions (Sankhua, 2000). 

The Brahmaputra valley in Assam, on the other hand, is underlain by recent alluvium 

approximately 200-300 m thick, consisting of clay, silt, sand, and pebbles. The valley is 

developed over the fore deep in between the peninsular mass and the Tethyan geosynclines. 

The fore deep is characterized by some complicated tectonic features represents a series of 

faults and thrust extending in the NE-SW direction from the eastern margin of the Meghalaya 

plateau across the North Cachar Hills to Tirap District of Arunachal Pradesh. These thrusts 

are originated at the time of the late Himalayan-Patkai-Naga Hills orogeny and pushed the 

tertiary deposits into folds and faults. The fore deep is believed to be under the sea till the 

sub-recent period received deposits during all the periods of the tertiary and quaternary ages. 

The tertiary deposits consist mainly of sand stones, shale, grit, conglomerate and lime stones 

(Sankhua, 2000).  

Towards the close of the Pleistocene period, alluvium began to be deposited in the form of 

sand, pebbles and gravels especially along the northern foothills of the Brahmaputra valley. 

These valley deposits of reddish brown sandy clay with some pockets of unasserted pebble, 
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cobble, sand and silt have been identified as older alluvium. The tertiary beds of the valley 

are overlain by a thick layer of newer alluvium composed of sand, silt and clay, which are 

being brought down from the rising Himalayas in the north, the Patkai Naga ranges in the 

east and south-east and the Meghalaya plateau in the south by numerous tributaries of the 

Brahmaputra. The characteristic geological and tectonic framework coupled with structural 

complexities has rendered the Brahmaputra basin geo-morphologically a most complicated 

one. A variety of landform under varied climatic conditions has formed over the geologic and 

tectonic base of the region. The peri-glacial, glacio-fluvial, and fluvial processes are 

dominantly operative in the basin at varying altitudes (Sankhua, 2006).  

The higher elevations of the Himalayas experience peri-glacial and glacio-fluvial erosion and 

deposition. The bare relief of the sub-Himalayas and greater Himalayas suffer from immense 

sheet erosion owing to peri-glacial solifluction. The low hill ranges with hot and humid 

climate and heavy rainfall concentrated to a few months of the year experience solifluction, 

sheet erosion and landsides.  

The incidence of landslides is high in the Himalayan foothills, where heavy rainfall, high 

seismicity and toe cutting of hill slopes by the streams are most frequent. Heavy rains often 

loosen soil and the soft rocks of the young Himalayan ranges. Rainwater percolates through 

joints, fractures, foliations, and pores of rocks and soils and finally makes them loose and 

heavy, which cause heavy slope failure. Fluvial processes are, on the other hand, significantly 

dominant on the valley bottoms and plains where alluvial deposition takes place due to 

erosion of the higher surface by rivers and flooding in the valleys. The Eros ional and 

depositional processes conspicuously intensified by copious rainfall and frequent seismic 

movements, however, play a dominant role in creating various fluvial-geomorphic 

environments in the basin (Sankhua, 2006). 

3.6     CHANNEL PROCESS 

The Brahmaputra River in India forms a complex river system characterized by the most 

dynamic and unique water and sediment transport pattern. The Brahmaputra is the fourth 

largest river in the world (Goswami and Das, 2000). The water yield from per unit basin area 

is among the highest of the major rivers of the world. The Jia Bhareli, a major tributary, 

carries a mean annual water discharge in the order of 0.0891 m3/sec/km2. As estimated by 

Goswami (1982), the Brahmaputra yields 0.0306 m3/sec/km2 at Pandu. As regards sediment 

transport, the river has also set records in carrying large volumes of sediment. The high 
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intensity of monsoon rains, easily erodible rocks, steep slopes, and high seismicity contribute 

a lot by rendering the river a heavily sediment-laden one. Thus, the Brahmaputra becomes 

one of the leading sediment carrying rivers of the world. Amongst the large rivers of the 

world, it is second only to the Yellow river in China in the amount of sediment transport per 

unit of basin area (Goswami and Das, 2000).  

The Brahmaputra is a uniquely braided river of the world. Although braiding seems to be best 

developed in rivers flowing over glacier outwash plains or alluvial fans, perfect braiding is 

also found to occur in large alluvial rivers having low slope, such as the Brahmaputra in 

Assam (India) and Bangladesh or the Yellow River in China. The Assam section of the 

Brahmaputra River is in fact, highly braided and characterized by the presence of numerous 

lateral as well as mid channel bars and islands (Goswami and Das, 2000).  

The high degree of braiding of the Brahmaputra channel near Dibrugarh and downstream of 

Guwahati is indicated by the calculated braiding indices of 5.3 and 6.7 respectively for the 

two reaches, following the method suggested by Brice (1964). A braiding Index of 4.8 for the 

entire Assam section of the river calculated on the basis of satellite data of 1993 also suggests 

a high degree of braiding of the Brahmaputra River (Sankhua, 2006). 

The basin with varied terrain characteristics and being an integral part of the monsoonal 

regime of south-east Asia shows a marked spatial variation in the distribution of precipitation. 

The rainfall in the Teesta valley varies from 164 cm in the south to 395 cm in the north. The 

average annual rainfall in the lower Brahmaputra valley is 213 cm while the same in the 

north-eastern foothill belt is 414 cm. The basin as a whole has the average annual rainfall of 

230 cm with a variability of 15-20%. The Himalayan sector receives 500 cm of rainfall per 

year, the lower ranges receiving more than the higher areas (Goswami and Das, 2000). 

During the monsoon, months of May to October receive about 12% of the annual total. 

In the sub-Himalayan belt soils with little depth developed over the Tertiary sand stones 

generally belong to red loam, laterite, and brown hill soil type with admixtures of cobbles and 

boulders. The greater part of the Brahmaputra valley is made up of new alluvium of recent 

deposition overlying Tertiary, Mesozoic and Archaean bedrocks. Along the piedmont zone, 

there occur some patches of older alluvium extending along the interfluves of the tributaries 

flowing from the Himalayan foothills. The soils of the Meghalaya plateau and the Mikir Hills 

in the south are of laterite and loamy silt and fine silt types.  

In general, braiding in the Brahmaputra follows the mechanism of central bar type of braid 
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formation. During high flow, a central bar is deposited in the channel and gradually the bar 

accretes vertically to the level of the floodplain. It also builds on the downstream end through 

deposition of bed load material due to the slack water occurring behind the bar. The bar 

growth causes a decrease in total cross-sectional area leading, thereby, to the instability of the 

channel. Lateral erosion then follows on one or both the banks. Through repetition of this 

process in the divided reach, a well developed braided reach with multiple sandbars and 

islands is produced (Sankhua, 2006).  

In the Assam section of the river, the presence of such nodes of stable banks is found to effect 

the formation and location of the bars. There are nine nodal reaches of narrow constriction at 

various locations along the Brahmaputra, which are at Murkongselek (4.8 km), Disangmukh 

(5.10 km), downstream of Jhanjimukh (3.75), upstream of Dhansiri north (4.0 km), 

downstream of Dhansirimukh (4.4 km), upstream of Tezpur (3.6 km), Pandu, Guwahati (1.2 

km), Sualkuchi (2.4 km) and Pancharatna (2.4 km). Since banks are relatively stable in these 

reaches, the river scours deeper to accommodate the flood discharge. The scoured debris is 

then deposited in the channel immediately downstream from the narrow section. As a result, 

the channel becomes wider and bars and islands are produced. Formation of bars causes 

reduction in cross sectional area and the river, therefore, cuts its banks laterally to 

accommodate the discharge. Thus, the downstream of the nodes intense braiding develops 

resulting in channel widening through continuous migration of both banks of the 

Brahmaputra (Sankhua, 2006).  

As reported from the studies carried out on braided rivers of the world, the major factors 

thought to be responsible for braiding and bar formation are steep channel gradient, high 

erodibility of bank materials, great variability in discharge, overabundance of load, and 

aggradation of the channel bed. In case of the Brahmaputra River in Assam bar formation and 

channel division are owing to a combination of factors like high variability in discharge, 

excessive sediment transport, easily erodible bank materials and aggradation of the channel. 

Being the fourth largest river in the world with an average discharge of 19,830 m3/sec at its 

mouth, the Brahmaputra carries 82% of its annual flow at Pandu (Assam) only during the 

rainy season from May to October. The maximum and minimum mean monthly flows in the 

river during 1990-2002 are 48,160 m3/sec and 3,072 m3/sec, respectively. On an average, 

therefore, the maximum flow is more than fifteen times the minimum (Goswami and Das, 

2000). 

High variability in discharge of the river is mainly caused by seasonal rhythm of the monsoon 
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and the freeze-thaw cycle of the Himalayan snow. As regards the pattern of sediment 

transport, the river has the record of carrying excessive sediment load which is believed to be 

one of the important factors responsible for braiding. 

3.7   STUDY AREA  

The area under Indian Territory encloses a 622.73 km river stretch encompassing 64 no. Of 

different cross section with kobo on the northern most (65no.) To Dhubri on the south (2no.). 

The cross-section no 1. In the series lies in the territory of Bangladesh. The area under the 

consideration for the present study encloses a 622.73 km river stretch of Brahmaputra 

encompassing 64 no. Of different cross section with Kobo on the northern most (65no.) to 

Dubri on the south (2no.).The plan of River Brahmaputra with depiction of study reach has 

been shown in Fig: 3.4.  
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Fig: 3.3.  Measured cross section for different cross sections along the 622 km river 
reach taken between the year 1982 to 1997 
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One can easily figure out the significant variations in width as well as bed configuration in 

general. Widths of the channel vary ranging from 3 km to 20 km. In an average width is 

around 6 km in the study reach. Visualizing the cross-sections in Fig: 3.3 , it is evident that 

some cross-sections are exhibiting incised channel forms whereas some showing wide 

shallow river pattern indicating that bed configurations  of the study reach are highly irregular 

ranging from rock outcrops  to fine alluvial bed. The hydraulic geometry data of 64 number 

of cross section were plotted to view the general tendencies of variation of the cross section 

profile in the temporal increments.  The plotting reveal a very drastic changes in the cross 

profiles for some of the sections.  Since, the successive stations along a cross section are very 

widely apart compared to the vertical variation of the ground levels the non submergible 

banks are not easily discernible. The longitudinal profile (Thalweg) for the study reach gives 

the idea that the reach is by a large aggrading in nature. The bed level variations from Year-

1993 to Year -1997 are highly irregular which suggests that 1 D hydraulic modelling should 

be applied only for relatively long stretch of the river. In this case it should be at least above 

100 km to predict longitudinal thalweg profiles.  

At Pandu, the river carries an average suspended load of 402 million metric tons. A river with 

such gigantic water and sediment discharge magnitudes represents its most dynamic fluvial 

regime. Its large alluvial channel having a width of 6 to 17 km is, therefore, marked by 

braiding, rapid aggradation and bank line changes (Sankhua, 2006). The longitudinal slope of 

reach Pandu to Jogighopa is 0.11m/km (Sarma, 2006) 

 

 
 
 
 
 
 
 
 
 



 58 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig: 3.4 Study Area 
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CHAPTER-4 
 

FORMULATION AND DEVELOPMENT OF                                       
FLOW SIMULATION MODEL 

4.1 INTRODUCTION 

The global hierarchal rank of the river Brahmaputra is recognized to be third in sediment 

discharge, fifth in fluvial discharge and eleventh in size of the total drainage area (Sarma, 

2005). Being one of the youngest river system with varied nature of drainage areas from 

snow peak mountains to lower flood valley of the Assam  and the complexity exuberated by 

high sediment yielding  geological surfaces it has been a very formidable task to quantify  all 

the embodied “fluvial-river-morphological characteristics” to explain the ever  changing 

characteristics of the river. The high degree of braiding(Goswami and Das, 2000) of the 

parent channel, more emphatically,  when it open to the Assam valley because of still a steep 

valley gradient the fall in the hydraulic competency due to braiding is reflected to sediment 

transportation and downstream aggradation. Very unstable hydraulic geometry and hence the 

river channel morphology in the spatial and temporal space hinders the formulation of an 

idealised hydraulic models. Moreover, the researches and the literatures on braided channels 

are less compared to single channel in alluvium region. Due to high non linearity involved in 

the interdependencies of the hydrological – morphological and hydraulic parameters, 

majority of relationships developed relating hydrological and hydraulic parameters are 

empirical.  

The river Brahmaputra is one of the rivers which are well under the observation of different 

stake holders. The sediment discharges and flood discharges at certain locations have been 

continuingly recorded and the river cross sections surveyed. Still, the limitation in the human 

capacity, instrumentation, the ambience of the measurement and the risk involved, the actual 

data acquisition often remain off-set by errors. The importance of the information that could 

be derived from the analysis of the data is very high in the design, management and future 

risk and hazard strategies.  

Taking in to account the situation as described above, the present study is a formative attempt 

to implement a flow simulation model HEC-RAS for the study reach. The algorithms 

established by the researchers /modellers in the various literatures advocate success of flow 

simulation model application depends on the size of the data covering wide patterns of 
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phenomena .More the data sets better is the results’ reliability. In the assessment of the 

available data, data sorting, data generation supporting further analysis, modelling and 

deriving inferences HEC-RAS has been known to be robust. As the technique is a data driven 

model requiring gamut of data patterns representing the actual phenomena to accommodate 

all the possibilities within the patterns of independent and dependent variables. 

In the near future, more work with more expertise on this line would be enhancing the 

dependability on the strength of the technique in the more complex analysis. 

The study has been carried out on the following data sets and the area. 

a) Study Stretch of the river channel (from  Kobo to Dhubri) 622.73 km 

b) No. of  the river cross sections ( year 1988, 1992, 1993 and 1997) 65.no 

c) Hydrological Data( Jogighopa-Pandu) 2003 to 2007 

4.2 DATA SOURCES AND DATA TYPES 

4.2.1 HYDROGRAPHIC DATA 

Morpho-metric data: the reduced levels of the river cross-sections of post-monsoon period of 

64 stations have been collected from the Brahmaputra Board, Government of India. The 

surveying time varies from 1957 to 1997. But for the present modeling, the most current 

available cross sectional data for the year 1988, 1992, 1993 and 1997 has been adopted. This 

data assumed to represent the most recent cross section configuration. 

4.2.2 DISCHARGE AND STAGE DATA 

Discharge and stage data of the river Brahmaputra collected for two along the main river 

channel cross-sections from Central Water Commission (CWC), Assam Flood Control 

Department and Brahmaputra Board have constituted main data resource to the model 

implementation. The length of data record used was from year 2003 to 2007. 

4.2.3 SEDIMENT DATA 

Sediment data obtained from the monthly suspended sediment data in respect of Jogighopa 

and Pandu for the years from 2003 to 2007 and average monthly discharge (cumecs) and 

monthly average suspended sediment yield of major tributaries processed for all the years 

from 1993 to 1997 have been used in the study. Characteristic sediment particle size 

distribution at the cross-sections was collected from CWC.  
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4.3 PRE- PROCESSING OF HYDRO GRAPHIC DATA 

As a certain degree of uncertainty is associated with hydrologic frequency distributions on 

relative time scales, the sensitive response function of the river / stream as Stage - Discharge 

(G-Q) relationships , Sediment discharge Rating (Q
t 

–Q) curves, Stream flow Hydrographs, 

etc needs to adequately represented from the observed field data. The Brahmaputra River 

Basin in terms of its complexity calls for well-defined response models. In the study, some of 

the significant steps followed are outlined as:  

 (i)   The first step is the abstraction of outliers and errors in the data sets. 

Conceptual or statistical tools as regression and curve fitting were implemented 

on the variables pertaining to specific river / stream to identify the irrational 

points; they were either discarded or rectified based on the earlier trends or 

pattern of the data.  

 (ii)  The datasets are then sorted strictly on a base time scale. Monthly average 

record data sets pertaining to the main river are chosen for the study, the period 

between November 2003 and October 2007 has been adopted as the base time 

scale for the framing of the channel response parameters and the model 

formulation.  

4.4 DATA GENERATION  

In numerical river modelling one of the most important parameter is upstream river boundary 

condition. For the Brahmaputra River the only available flow data are located in the middle 

reach of the main river (Pandu, at river cross section 22 and Jogigopa cross section 9).  

The upstream river location is located at a river cross section 65 place called Kobo. 

Therefore, using the drainage-area ratio method, flow measured at Pandu site was transferred 

to Kobo site. The remaining flow at Pandu was used as internal boundary in the numerical 

model.  

In this process, with the help of ARCHYDRO 9 extension of ARCGIS 9.3, the drainage area 

of the two gauging sites has been delineated; i.e. drainage area which is contributing for 

gauging station at Pandu and drainage areas contributing for gauging site at Kobo. See Fig. 

For both station the contributing drainage area has been calculated and used for generation of 

upstream boundary condition. The drainage area contributing for station at Kobo has been 

found to be 175862 km2
 and for Pandu 345667 km2.  
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Figure showing the contributing area for Pandu and Kobo gauging stations; Developed from 

90m resolution SRTM DEM.  

4.5 DEVELOPMENT OF FLOW SIMULATION MODEL IN ‘HEC-RAS’  

The system contains three one-dimensional hydraulic analysis components for: (1) steady 

flow water surface profile computations; (2) unsteady flow simulation; and (3) movable 

boundary sediment transport computations.  A key element is that all three components will 

use a common geometric data representation and common geometric and hydraulic 

computation routines.  In addition to the three hydraulic analysis components, the system 

contains several hydraulic design features that can be invoked once the basic water surface 

profiles are computed. 

HEC-RAS is designed to perform one-dimensional hydraulic calculations for a full network 

of natural and constructed channels.  Theoretical basis for one-dimensional calculation in 

HECRAS is briefed in chapter-2.  

4.5.1 DATA REQUIREMENTS AND INPUT  

The basic input data required for sedimentation analysis by HEC-RAS model can be grouped 

into four categories as below.  
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4.5.1.1 Geometric Data  

Geometry of the physical system is represented by cross sections, specified by coordinate 

points (stations and elevations), and the distance between cross sections. Hydraulic roughness 

is measured by Manning’s n-values and can vary from cross section to cross section. At each 

cross section n-values may vary vertically and horizontally. The program raises or lowers 

cross-section elevations to reflect deposition or scour and thus generates data during the 

course of its execution.  

The River System Schematic  

The river system schematic is required for any geometric data set within the HEC-RAS 

system.  The schematic defines how the various river reaches are connected, as well as 

establishing a naming convention for referencing all the other data.  The river system 

schematic is developed by drawing and connecting the various reaches of the system within 

the geometric data editor (Fig: 4.1). It is required to develop the river system schematic 

before any other data can be entered.  

Each river reach on the schematic is given a unique identifier.  As other data are entered, the 

data are referenced to a specific reach of the schematic.  For example, each cross section must 

have a “River”, “Reach” and “River Station” identifier.  The river and reach identifiers 

defines which reach the cross section lives in, while the river station identifier defines where 

that cross section is located within the reach, with respect to the other cross sections for that 

reach.  

 
 

 
Fig: 4.1 Schematic Plot of the Study Reach of Brahmaputra  

River in the Program Module. 
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The connectivity of reaches is very important in order for the model to understand how the 

computations should proceed from one reach to the next. It is required to draw each reach 

from upstream to downstream, in what is considered to be the positive flow direction.  

Cross Section Geometry  

Boundary geometry for the analysis of flow in natural streams is specified in terms of ground 

surface profiles (cross sections) and the measured distances between them (reach lengths). 

Cross sections are located at intervals along a stream to characterize the flow carrying 

capability of the stream and its adjacent floodplain. They should extend across the entire 

floodplain and should be perpendicular to the anticipated flow lines. Occasionally it is 

necessary to layout cross-sections in a curved or dog-leg alignment to meet this requirement. 

Every effort should be made to obtain cross sections that accurately represent the stream and 

floodplain geometry.   

Cross sections are required at representative locations throughout a stream reach and at 

locations where changes occur in discharge, slope, shape, or roughness, at locations where 

levees begin or end and at bridges or control structures such as weirs. Where abrupt changes 

occur, several cross sections should be used to describe the change regardless of the distance.  

Cross section spacing is also a function of stream size, slope, and the uniformity of cross 

section shape.  In general, large uniform rivers of flat slope normally require the fewest 

number of cross sections per km.    The purpose of the study also affects spacing of cross 

sections.  For instance, navigation studies on large relatively flat streams may require closely 

spaced (e.g., 200 feet) cross sections to analyze the effect of local conditions on low flow 

depths, whereas cross sections for sedimentation studies, to determine deposition in 

reservoirs, may be spaced at intervals on the order of km.  

The choice of friction loss equation may also influence the spacing of cross sections.  For 

instance, cross section spacing may be maximized when calculating an M1 profile (backwater 

profile) with the average friction slope equation or when the harmonic mean friction slope 

equation is used to compute M2 profiles (draw down profile).  The HEC-RAS software 

provides the option to let the program select the averaging equation.  

Each cross section in an HEC-RAS data set is identified by a River, Reach, and River Station 

label.  The cross section is described by entering the station and elevation (X-Y data) from 

left to right, with respect to looking in the downstream direction.  The River Station identifier 

may correspond to stationing along the channel, mile points, or any fictitious numbering 
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system. The numbering system must be consistent, in that the program assumes that higher 

numbers are upstream and lower numbers are downstream.   

Each data point in the cross section is given a station number corresponding to the horizontal 

distance from a starting point on the left.  Up to 500 data points may be used to describe each 

cross section.  Cross section data are traditionally defined looking in the downstream 

direction.  The program considers the left side of the stream to have the lowest station 

numbers and the right side to have the highest.  Cross section data are allowed to have 

negative stationing values.  Stationing must be entered from left to right in increasing order.  

However, more than one point can have the same stationing value.  The left and right stations 

separating the main channel from the over bank areas must be specified on the cross section 

data editor.  End points of a cross section that are too low (below the computed water surface 

elevation) will automatically be extended vertically and a note indicating that the cross 

section had to be extended will show up in the output for that section.  The program adds 

additional wetted perimeter for any water that comes into contact with the extended walls.  

Other data that are required for each cross section consist of: downstream reach lengths; 

roughness coefficients; and contraction and expansion coefficients.  These data will be 

discussed in detail later in this chapter. Numerous program options are available to allow 

easily adding or modifying cross section data.  

Reach Lengths  

The measured distances between cross sections are referred to as reach lengths.  The reach 

lengths for the left over bank, right over bank and channel are specified on the cross section 

data editor.  Channel reach lengths are typically measured along the thalweg.  Over bank 

reach lengths should be measured along the anticipated path of the center of mass of the over 

bank flow.  Often, these three lengths will be of similar value.  There are, however, 

conditions where they will differ significantly, such as at river bends, or where the channel 

meanders and the over banks are straight.  Where the distances between cross sections for 

channel and over banks are different, a discharge-weighted reach length is determined based 

on the discharges in the main channel and left and right over bank segments of the reach. In 

the selected reach of Brahmaputra, all three lengths were taken similar values. Downstream 

reach lengths as well as reach length with respect to extreme downstream station (Jogighopa) 

are given in Table: 4.1     
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Table 4.1 Reach Length of Study All Reaches 

 
 

S.no. Channel name D/S reach length Distance from base station 

1 dhubri 2 0 0 

2 3 107170.1 107170.1 

3 4 10199.98 214340.2 

4 5 8669.99 321510.3 

5 6 9690.02 428680.4 

6 7 9690.02 535850.5 

7 8 7140 643020.6 

8 9 9180 750190.7 

9 10 10199.98 857360.8 

10 11 8160 964530.9 

11 12 8669.99 1071701 

12 13 10199.98 1178871 

13 14 8160 1286041 

14 15 9690.02 1393211 

15 16 8669.99 1500381 

16 17 9690.02 1607552 

17 18 11219.99 1714722 

18 19 8669.99 1821892 

19 20 6550.01 1929062 

20 21 6551.01 2036232 

21 22 8160 2143402 

22 23 9180 2250572 

23 24 6630.01 2357742 

24 25 5610 2464912 

25 26 6120 2572082 
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26 27 9690.02 2679253 

27 28 6630.01 2786423 

28 29 10719.98 2893593 

29 30 10199.98 3000763 

30 31 10199.98 3107933 

31 32 11729.99 3215103 

32 33 12750 3322273 

33 34 13270 3429443 

34 35 15800 3536613 

35 36 15309.96 3643783 

36 37 11729 3750954 

37 38 12240 3858124 

38 39 6630 3965294 

39 40 11219.99 4072464 

40 41 11219.99 4179634 

41 42 8669.99 4286804 

42 43 13759.99 4393974 

43 44 11219.99 4501144 

44 45 16320.09 4608314 

45 46 14280 4715484 

46 47 11219.99 4822655 

47 48 9690.02 4929825 

48 49 8669.99 5036995 

49 50 7140 5144165 

50 51 7140 5251335 

51 52 7140 5358505 

52 53 7140 5465675 

53 54 9690 5572845 
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54 55 9180 5680015 

55 56 9180 5787185 

56 57 17850 5894356 

57 58 11219.99 6001526 

58 59 9690.02 6108696 

59 60 9690.02 6215866 

60 61 12750 6323036 

61 62 11219.99 6430206 

62 63 13260.01 6537376 

63 64 8160 6644546 

64 Kobo 65 5610 6751716 

 

 

 Energy Loss Coefficients  

Several types of loss coefficients are utilized by the program to evaluate energy losses: (1) 

Manning’s n values or equivalent roughness “k” values for friction loss, (2) contraction and 

expansion coefficients to evaluate transition (shock) losses. 

Manning’s n:  Selection of an appropriate value for Manning’s n is very significant to the 

accuracy of the computed water surface profiles.  The value of Manning’s n is highly variable 

and depends on a number of factors including:  surface roughness; vegetation; channel 

irregularities; channel alignment; scour and deposition; obstructions; size and shape of the 

channel; stage and discharge; seasonal changes; temperature; and suspended material and bed 

load.  

In general, Manning’s n values should be calibrated whenever observed water surface profile 

information (gage data, as well as high water marks) is available.  As water surface profile 

information is adequately available for the study reach, so Manning’s n values were 

calibrated in fixed bed module with spatial as well as based on discharge variation and values 

fed into sediment module of flow simulation for further analysis. 

There is a difference in Manning's n between fixed and movable bed situations. Fixed bed n's 

are values which do not depend on the characteristics of the movable boundary, movable bed 
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n's are values which may depend on the rate of sediment transport and, hence, the discharge. 

Appropriate values for Manning's n were initially determined by executing HEC-RAS in 

fixed bed mode, i.e., as a step-backwater program. This is necessary to properly compare 

calculated water surface elevations with observed water surface profiles, with established 

rating curves, during the analysis of geometric data and calibration of n values, many 

program executions were required. Study reach has been subdivided into separate segments, 

cross-section were interpolated to appropriate numbers and program is executed for different 

value of n until computed water surface profiles at approximately  matched with observed 

ones. Finally, calibrated n with discharge variation and spatial variation obtained. 

Changing n values with distance should be justified based on changes in vegetation, channel 

form, structures, or sediment size. The technique assumes that the entire bed of the river is 

stationary and does not move or change roughness during a flood event. Before focusing on 

sediment transport, however, Manning’s n value for the channel is appropriate for a movable 

boundary analyzed and whatever required minor adjustments, were made to ensure that the n 

value for the movable portion of the cross section is in reasonable agreement with that 

obtained from bed roughness predictors.  

Selection of Contraction and Expansion Coefficients 

Information for contraction and expansion losses is sparser than that for n values. King and 

Brater (1963) give values of 0.5 and 1.0 respectively for a sudden change in area 

accompanied by sharp corners, and values of 0.05 and 0.10 for the most efficient transitions. 

Design values of 0.1 and 0.2 are suggested. They cite Hinds (1928) as their reference. Values 

often cited by the Corps of Engineers (HEC, 1990a) are 0.1 and 0.3, contraction and 

expansion respectively, for gradual transitions .So in the present study, contraction and 

expansion coefficient are by default taken as 0.1 and 0.30. 

4.4.1.2 Hydrologic Data  

The hydrologic data consist of water discharges, temperatures and flow durations. The 

discharge hydrograph is approximated by a sequence of steady inflow discharges each of 

which occurs for a specified numbers of days. Water surface profiles are calculated by using 

the standard step method to solve the energy equation. Friction loss is calculated by 

Manning’s equation, and expansion and contraction losses will be included if the 

representative loss coefficients are specified.  
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The monthly discharges at the site for the period Nov. 1993 to Nov. 1997 are used to obtain a 

discharge frequency hydrographs and the gauges respective.  

Steady Flow Data  

Steady flow data were required in order to perform a steady water surface profile calculation 

and consequently calibration of ‘n’ worked out. Steady flow data consist of flow regime, 

boundary conditions and discharge information.    

Boundary conditions are necessary to establish the water surface at the ends of the river 

system (upstream and downstream).  A starting water surface is necessary in order for the 

program to begin the calculations.  In a sub critical flow regime, boundary conditions are 

only necessary at the downstream ends of the river system.  If a supercritical flow regime is 

going to be calculated, boundary conditions are only necessary at the upstream ends of the 

river system.  If a mixed flow regime calculation is going to be made, then boundary 

conditions must be entered at all ends of the river system. Observed monthly flow profile 

were fed as input in different cross-section segmental reach and program were run separately 

to compute water surface elevation at d/s and compared with observed one to estimate n .  

Quasi-unsteady Flow Data 

Current sediment capabilities in HEC-RAS are based on quasi-unsteady hydraulics. The 

quasi-unsteady approach approximates a flow hydrograph by a series of steady flow profiles 

associated with corresponding flow durations. Boundary conditions were flow series (flow 

hydrograph) at upstream boundary(c/s-65 Kobo). At downstream boundary(c/s-2 at Dubri 

site), stage time series /rating curve applied. The stage -time series boundary condition allows 

inputting a time series of stages at the downstream boundary. 

As sensitive inputs to the Model boundary values, the Stage-Discharge relations, the G-Q 

relations of the major rivers/ streams under consideration needs to sufficiently dictate the 

hydraulic behavior,. 
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Fig 4.2 Simulation Hydrograph generated at c/s-65 (Kobo Site) 
 

Stage-Discharge Relation at extreme d/s boundary of reach is plotted in Fig: 4.4, similarly 

Discharge hydrograph at extreme u/s boundary is also plotted in Fig 4.3 which has also been 

taken as inputs for simulating flow for specific period. Lateral flow series at Jogighopa site 

shown in Fig 4.4. 

                                                   
                     

Fig: 4.3 Stage – Discharge Relation at c/s-9(Jogighopa site) 
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Fig 4.4 Stage Series at c/s-9(Jogighopa site) 

 

4.4.1.3 Sediment Data  

The sediment data consist of inflowing sediment load data, gradation of material in the 

stream bed and information about sediment properties. The inflowing sediment load is related 

to water discharge by a rating table at the upstream end of the model.  

Sediment mixtures are classified by grain size using the American Geophysical union scale. 

The program accommodates clay (up to 0.004 mm), four classes of silt (0.004 – 0.0625 mm), 

five classes of sand (very fine sand 0.0625 mm to very course sand 0.2 mm) and five classes 

of gravel (very fine gravel 0.2mm to very coarse gravel 0.64mm).Sediment transport capacity 

is calculated at each cross section by using hydraulic data obtained during the calculation of 

water surface profiles and the gradation of bed material for that cross section.  

The variations in the sediment load discharge with the flow is calibrated from the Sediment 

Discharge Rating Curves and entered to the model input.  

Each cross-section must have an associated bed gradation. Possession of data in regard to bed 

material for all cross section couldn’t be done. But character of bed material within the study 

reach can presumed to be similar in nature so far sediment transport is concerned. Bed 

material gradation at cross section -2 (Dhubri) is taken as representative bed gradation (Fig: 

4.5) through out the alluvial study reach except where outcrops were present.  
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Fig: 4.5 Representative Bed Gradation (semi-log) Plot of the Study Reach 

Sediment Boundary Conditions 

For sediment transport analysis sediment boundary conditions must be applied. Usually 

boundary conditions are applied at extreme u/s and d/s cross sections .Internal boundary 

conditions were applied where flow change is occurring i.e. where tributaries are meeting the 

main stream. In model formulated sediment rating curves were applied for simulating 

sediment transport. Sediment rating curve at c/s-65 were plotted and depicted in Figs. 4.6.  A 

rating curve determines a sediment inflow based on water flow.  

Besides the hydrologic data, sediment data and roughness coefficients, other bound values 

accorded are the depth of sediment bed control volume (adopted as 5.0 meter wherever 

necessary) and the water temperature. The sensitivity of the variation in water temperature 

(
0
C) over the sediment transport rates and water surface is also simulated as presented in the 

result summary tables. Average monthly variation of temperature as per field data (Based on 

average. Temperature record in the period 1931 -1960 at Guwahati) is adopted (Table 4.2).  
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Fig: 4.6 Sediment Rating Curve at c/s-22 (Pandu Site) 
 

Table: 4.2 Average Monthly Temperature Variations 

 S.N. Month Average 
Temperature(°C) 

1 January 17.5 
2 February 19.55 
3 March 23.35 
4 April 25.95 
5 May 26.9 
6 June 28.1 
7 July 28.95 
8 August 29 
9 September 28.65 
10 October 26.25 
11 November 22.3 
12 December 18.7 

4.4.2 PROGRAM ORGANISATION 

The HEC-RAS program in its present form has been organized into two major modules. 

Modules run with various sub-programs where data have been transferred for specific output 

generation. The functional flowchart of the program is shown in Fig. 4.8 
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4.4.2.1 Hydrodynamic modeling and calibration of ‘n’. (Steady flow analysis)[First 

Module] 

Roughness Coefficients  

Roughness coefficients are one of the main variables used in calibrating a hydraulic model. 

Generally, for a free flowing river, roughness decreases with increased stage and flow   

However, if the banks of a river are rougher than the channel bottom (due to trees and 

brushes), then the composite n value will increase with increased stage. Sediment and debris 

can also play an important role in changing the roughness. More sediment and debris in a 

river will require the modeler to use higher n values in order to match observed water 

surfaces.  

4.4.2.2 Sediment Transport Analysis (Quasi-unsteady flow analysis) [Second Module] 

The outputs obtained from first module were to be applied in this module for calibration and 

testing of the model. Calibrated value of roughness parameter n from first module gave the 

idea of n and its relation with discharge and also its variation with distance. With slight 

processing the calibrated set of Manning’s n were fed into sediment module. In this module 

the whole study reach were taken as geometric data i.e. Cross-section-65 (Kobo) to cross-

section -2 (Dhubri). Some intermediate cross-sections were linearly interpolated to assure 

stability to running of the module. 

Other sediment data like representative bed gradation at each cross-section /sediment inflow 

at u/s locations as well as flow change locations were fed into the module. Flow series at u/s 

boundary and lateral flow series at internal boundaries as well as stage series at d/s is fed into 

the module. Simulation plans for varying sediment predictors as well as different time series 

were designated and executed and outputs were obtained. A detailed discussion on outputs 

will be done in the consecutive chapter. 
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Fig 4.7 Sediment Transport Analysis and Prediction of water surface profile for 

Nov2003 and July2004 (C/s-2 to C/s-65) 
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                    Fig:  4.8 Schematic Flow Chart of Adopted Methodology 
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CHAPTER-5 
 

RESULTS AND DISCUSSIONS 
 
5.1 INTRODUCTION 
Flow simulation is done on the 1D mathematical model HEC-RAS in the study reach of 

Brahmaputra Rive. The manning’s roughness coefficient is calibrated and assessment of 

stream power, rating curves and consequently sediment transport analysis is done with 

application of various available sediment predictors to assess aggradations/degradations 

within the reach. Temporal unit stream power variations with correlation to slope variation 

are also dealt. The results obtained are discussed in detail herein after. 

 

5.2 BED ROUGHNESS CALIBRATION   

Observed flow series of year 2004 at Jogighpa and Pandu is used to calibrate manning’s 

roughness coefficient. The calibration is done for range of flows for each month. And hence 

roughness variation for high and low flows is accounted for (Fig. 5.1). For this process steady 

flow condition is used and observed water surface is matched with calculated one.  

It can be observed that, the seasonal variation of manning’s roughness is higher in non 

monsoon period (low flow) and lower monsoon period (high flow). This trend is in 

agreement with observed results in major alluvial rivers (Fig. 5.2.).  

It is also observed that roughness varies within the same month; but since the seasonal 

variation is more pronounced, seasonal value is adopted for qausi-unsteady sediment 

transport analysis in HEC-RAS model.   

The capability of   HEC-RAS to accommodate seasonal roughness variation within a one full 

year cycle is applied. The subsequent sediment transport analysis will be discussed in the 

coming topics.  
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Fig.5.1. Seasonal roughness variation after model calibration 

 

Fig.5.2. Seasonal roughness variation vs. high flow used for calibration. 

 

5.3 SEDIMENT TRANSPORT ANALYSIS, HEC-RAS   

Using the calibrated Manning’s roughness value, mobile bed sediment transport is done for 

the year Nov28, 2003 to Sept30, 2007.  The analysis is preformed using Ackers – White, 

Engelund-Hansen and Yang’s sediment transport function. The reason this functions are 

Seasonal  RoughnessVariation 

Year 2004

Dec  Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  Jan  

M
an

nin
g's

 'n
'

0.01

0.02

0.03

0.04

0.05

0.06

time vs 'n' for high flow 
time vs 'n' for low flow

Flow vs Roughness Seasonal Sariation 

Year 2004

Dec  Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  Jan  

Q(
m^

3/s
) a

nd
 n/

10
00

00
0

0

20000

40000

60000

80000

Time vs HighFlow (Q)
Time vs 'n' for corresponding Q



 82 

selected is that the range of input values they used in developing their equations encompass 

the situation in Brahmaputra River and also due to their wide range of applicability.  Ackers – 

White is developed in flume for overall particle diameter of 0.04-7mm and Yang developed 

his equation based on filed observation of overall particle diameter of 0.15-1.7mm, which 

bases transport on Stream Power, the product of velocity and shear stress. Engelund-Hansen 

is developed based on flume data for particle mean diameter of 0.19mm to 0.93mm. It has 

been extensively tested and found to be fairly consistent with field data (HEC-RAS, manual, 

2010). To see the comparison for this study average mean particle diameter of 0.44mm is 

used. The Ackers-White transport function is a total load function developed under the 

assumption that fine sediment transport is best related to the turbulent fluctuations in the 

water column and coarse sediment transport is best related to the net grain shear with the 

mean velocity used as the representative variable. The transport function was developed in 

terms of particle size, mobility, and transport. See Chapter 2 for further discussion.  

It should be noted that the value adopted here is based on sediment gradation data collected in 

the middle reach of the river (Plasibari). Hence it is assumed that it represents the whole 

reach.  

The analysis is performed using upstream boundary condition of Equilibrium Load option; 

this is due to lack of verified rating curve at Cross Section 65. HEC-RAS computes sediment 

transport capacity, for each time step, at this cross section and this will be used as the 

sediment inflow. Since load is set equal to capacity for each grain size, there will no be 

aggradation or degradation at this cross section.   

The output from the above three sediment transport function will be discussed here under. 

The discussion will focus on the overall sediment deposition or erosion and hence the 

aggradation and degradation of bed level over the analysis period of 2003 to 2007.  

Bed level change of + 5cm will be considered as fairly stable cross section in this analysis.  

 
5.3.1 ACKERS – WHITE SEDIMENT TRANSPORT ANALYSIS OUTPUT  
 
As can be seen in the figure below, the river bed is exhibiting variation in time in the pattern 

of aggradation or degradation. The output of this analysis clearly shows that aggradation and 

degradation occurring simultaneously in different portion of the river reach. And also it can 

be observed that in some cross sections there is pure aggradation or degradation trend over 

the year 2003 to 2007; where as in some there is occurrence of both aggradation(e.g. CS62) 

and degradation(e.g. CS63) over the simulation period (e.g. CS 60, 58, 53, 46) for example.  
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Fig.5.3. variation of bed change for individual cross section over the simulation period based on 

Acker-White sediment transport function 

Sediment transport function is directly dependent on parameters like mean sediment particle 

size, velocity, shear stress and flow pattern in the channel. Figure 5.4 shows that bed change 

over high flow and low flow. It is observed that the bed is eroding in high flow period and 

deposition is taking place over low flow periods.  

   

   

   

Fig. 5.4 bed level change vs water surface elevation 
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And it is also observed that when the discharge increases, velocity and shear stress in the 

channel increase and hence bed level change is the result (Fig. 5.5). In figure 5.5, velocity, 

flow and shear stress pattern changing in tandem is shown.  

   

Fig. 5.5 bed level change vs channel shear stress and velocity 

5.3.2 YANG TRANSPORT ANALYSIS OUTPUT 

Similarly the sediment analysis is performed using Yang’s sediment transport function. Here 

also the general trend is more or less the same as that of result obtained from Acker-White 

sediment transport function. But the major difference is observed in the extent of aggradation 

and degradation observed.  

In Yang’ sediment transport function the observed bed change variation is minimal compared 

to the above method. As can be observed in figure 5.6, the number of cross section which 

shows bed change variation in the range of ±5cm has greatly decreased. 12 compared to 32 

observed in Acker-White sediment transport predictor.   
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Fig.5.6. variation of bed change for individual cross section over the simulation period 
based on Yang sediment transport function 

 

In this sediment transport function, the variation of bed change is minimal to the variation of 

magnitude of flow (fig. 5.7).  
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CS 19 CS 9 CS 5 

Fig. 5.7 bed level change vs water surface elevation 

   

CS 19 CS 9 CS 5 

Fig. 5.8 bed level change vs channel shear stress and velocity 
 

5.3.3 ENGULEND-HANSEN TRANSPORT ANALYSIS OUTPUT 

Here the number of cross section more than or equal to five centimeter has increase from 12 

(Yang’s method) to 22. Yet the extent of bed change variation over the simulation period is 

closer to Yang’s method than Acker-White. Some cross sections where there was observed 

aggradation or degradation in the other methods has exhibited the reverse trend in this 

method.  
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Fig.5.9. variation of bed change for individual cross section over the simulation period based on  
sediment transport function Engulend-Hansen 
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Mass capacity vs flow CS8 Mass capacity vs flow CS9 

Fig. 5.10 Mass capacity vs flow 

 In the above figure it can be seen that, at cross sections where there is low mass capacity 

(transport capacity in total mass at computational step) (CS9) there is a tendency for 

deposition. Where there is high mass capacity (CS8) erosion is occurring. Therefore this 

clearly shows the correlation between sediment transport capacity and bed level change.  

   

4 9 22 

Fig. 5.11 bed level change vs water surface elevation 

   

9 8 4 

Fig. 5.12 bed level change vs channel shear stress and velocity 
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The above figure (5.11 and 5.12) also shows the same trend that is explained in the above 

topics.   

Figure 5.13 shows that the average bed variation comparing the three methods used in this 

study. All of the methods have their own bed level prediction, Acker-White methods gives 

very high bed level variation compared to the other two methods.  

In terms of the magnitude of bed level change, Yang and Engulend-Hansen functions are in 

agreement.  

From this figure, it can be concluded that generally the pattern of aggradation and 

degradation is distributed throughout the 620km of the reach. The localities that aggradation 

is predominant are in the vicinity of Cross Section 62,58,50,47,43,28,22,18,and 9.  

It should be bear in mind that in some cross sections one function is predicting and the other 

degradation or relatively stable bed level condition. And the use of any particular method is 

very much dependent on the applicability of the function for the given river.  To suggest any 

one of the above method for sediment transport predication, it requires the use of intensive 

data for model verification; which in this case could not be available for the simulation 

period.  
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Fig. 5.13 Average bed level variation for the three transport functions over the 

simulation period 
 
The sediment transport functions are, to varying degrees, the results of theoretical and 

empirical science. Even the most theoretically detailed was fit to data using empirical 

coefficients. These coefficients represent the central tendencies of the data considered but 

will not likely reflect the transport of the specific site precisely, even if an appropriate 

transport function is selected.  Hence at the end of the day field verification is a must.  
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CHAPTER-6 
 

PILOT STUDY SCHEMES FOR EROSION CONTROL ON THE 
BRAHMAPUTRA RIVER FOR MORIGAON SITE;    

AND NEAR GUWAHATI AIRPORT OF BRAHMAPUTRA RIVER 
 
 

6.1 PILOT STUDY SCHEME FOR EROSION CONTROL ON THE 
          BRAHMAPUTRA RIVER FOR MORIGAON SITE  
 
The Water Resources Department of Assam communicated to IIT Roorkee the 
partial cross-sectional data survey data of the left bank side of the Brahmaputra in 
the study area in Morigaon site at the vicinity of 61th KM of the left Dyke, along with 
stage data. In addition the latest satellite data (2007) of the pilot study area has been 
procured by IIT Roorkee. Making use of the above data, a scheme for pilot study has 
been formulated. A schematic diagram of the arrangement of erosion control 
structures is depicted in Fig. 62.  
 
The underlying concept behind the pilot scheme is centred on breaking-up the 
incoming erosion vortex current by using framed structures like RCC Kellner Jetty, 
and reversal of the erosion secondary flow towards the away from the bank through 
use of emerging technique of submerged vane to induce sedimentation. 
Furthermore, to afford protection to the critical toe of the bank line. Polymer Rope 
Gabions filled with Geo-Synthetic bags has been proposed along with and additional 
protection by RCC Kellner Jetty.  
 
The rationale of using the above new techniques for the Brahmaputra is based on 
the fact that the RCC Kellner Jetty field is expected to trap sediment and debris and 
thereby effectively weaken the eroding flow vortices. The RCC Kellner Jetty field 
technique in due course will create sediment deposits as the heavy sediment laden 
flow will be adequately slowed down the part with bed material load.  
 
The detailed estimate of the pilot study scheme is given in the following pages along 
with the layout of the river training structures their structural details.  
 
Total estimated cost of the scheme stands of Rs. 1.644 crores for the one Kilometer 
bank length of the pilot study area.  
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6.1.1 ABSTRACT OF TOTAL APPROXIMATE COST AT MORIGAON SITE  
 

1.  
 Cost of Polymer Rope Gabion Submerged Vane  
Total No. of submerged vane = 3 no. x 7 array  
    = 21 no.  
Cost of one submerged vane = 93650 
Total Cost of Submerged vane   = 21 x 93650 = Rs.1966650  

 Cost of Polymer Rope Gabion along the bank  
 Total length = 500m  
 Cost of Polymer Rope Gabion 9365/m  
 Cost Polymer Rope Gabion along the bank = 500 x 9365  

= Rs.4682500 
2.  No. RCC Kellner  Jetty along the bank = (500/2.5) x 3 rows = 600 no.    
 No. of RCC Kellner Jetty in retards along the bank  
     = (10/2.5)x3 rows x 7 lines = 84 no.  

No. of RCC Kellner Jetty in diversion line  
    = (510/2.5)x5 line = 1020 no.  
No. of RCC Kellner Jetty in retard line (50/2.5)x5 line + (50/2.5)x 3line + 
(45/2.5)x 3line x 2 no. +(40/2.5)x 3line x 2 no.+ (35/2.5)x 3line + (30/2.5)x 
3line +  (20/2.5)x 3line +(20/2.5)x 5line =506 
Total No. of RCC Kellner Jetty in retard  and diversion  

= 600 + 84 + 1020 + 506= 2210 no. 
 Cost of one RCC Kellner  Jetty Rs. 4040  
 Total cost of RCC Kellner  Jetty = 2210 x 4040 = Rs.8928400 

3. Cost of 26mm PP Rope  
Total length = 510 x 5rows + 50 x 5 + 50 x 3 + 45 x 3 + 45 x 3+ 40 x 5 + 35 
x 3 + 30 x 3+ 20 x 3 + 20 x 5 + 500 x 3 + 7 x 10 x 3 = 5485m  
Add 5% extra for tie, anchorage and wastage = 1.05 x 5485 = 5760m  
Cost of pp rope = Rs.150/m  
Total cost of pp rope = 5760 x 150 = Rs.864000  
 

Total cost of Submerged Vane + RCC Kellner  Jetty + PP Rope  
= Rs.1966650 + Rs.4682500 + Rs.8928400+ Rs.864000    

    = Rs.16441550/-  
     = Rs.1.644 Crore   
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6.1.2 APPROXIMATE ESTIMATE FOR R.C.C. KELLNER JETTY  
 

Size of RCC Kellner Jetty = 3.0 m  
Section – 15 cm x 15 cm  
 
6.1.2.1 Quantity of Concrete for one No. RCC Kellner Jetty  

(a) Volume of Concrete  
 = 0.15 m x 0.15 m x 3.0 m x 3 nos.  
 = 0.2025 m3 
(b) Providing haunch at the junction of  
 RCC Kellner jetty of size = 0.15 m x 0.15 m  
 No. of haunch = 12 Nos.  
 Quantity of Concrete for haunch  

 = 1215.015.015.0
2
1

××××  

 = 0.02025 m3 
Total volume of concrete (a+b) 
 =(0.2025 + 0.02025) m3 
 = 0.22275 m3 
 = 7.867 cft = 0.223m3 
 
6.1.2.2 Quantity of steel for one RCC Kellner Jetty  
(a) For longitudinal bars  
 No of bars = 4 nos  
 Dia of bars = 8 mm  
Volume of longitudinal bas  

  = 4 nos x 
4
π x 82 x 3000 = 602880 mm3 

     = 6.0288 x 10-4 m3 
 Density of steel = 7.85 t/m3 
 Wt. of longitudinal bars = 7.85 x 6.0288 x 10-4 x 3 nos. 
     = 0.01420 t  
     = 14.20 kg  
(b) For stirrups  
 Length of one strimps rod = (120 mm x 4 + 50 mm) = 530 mm  
       = 0.53 m  

  No of stirrup = 





 +1

150
3000 =21 nos 

 Total length of stirrup rod = 21 x 0.53 x 3  

= 33.39 m  

 Volume of stirrup rod = π/4 x 62 x 33.39  x 103   

=943601.4 mm3  

= 9.4360x 10-4 m3 

 Wt of stirrup rod = 7.85 x 9.4360 x 10-4 t  
=7.4072 x 10-3 t 
=7.40 kg 
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 Total wt (a+b) = (14.20 +7.40 ) = 21.60 kg  
 Add 5% extra for wastage = 21.60 x 1.05 = 22.68 kg  
       = 0.02268MT 
  
6.1.2.3 Quantity of G. I.wire of dia 4 mm  
 Providing hole at  the spacing of 30 cm c/c 
 No of hole for one member  

  ( )




 +

− 1
30

60300 =9 nos  

Provide 10 nos hole, 5 nos of each side  
Then spacing of hole = 25 cm c/c 

 Length of wire  

  =
15525255050

7575100100125125
2222

222222

×+++++

+++++  

= 176.77 + 141.42 + 106.06 + 70.71 + 35.355 + 75  
= 605.315 CM  

  
 Total no of force = 12 nos 
 Total length = 12 x 605.315  = 7263.75 cm 
      = 72.64 m  
 Add 5% extra for wastage   = 3.64  
      --------------- 
      = 76.28 m  
 Using 4 mm G. I wire  
  Volume of total wire = π/4 x 42 x 76.28 x 103  
     =958076.8 mm3 
     =9.58x 10-4 m3 
  Wt of wire = 7.85 x 9.58 x 10-4 = 7.52 x 10-3 t  
     = 7.52 kg 
6.1.2.4 Quantity of Shuttering  
Total length of shuttering = (0.15+0.15+0.15)x 3 + 0.15 x 0.15 x 2  

= 1.395 m2 for 1 no.  
For 3 no. = 1.395 x 3 = 4.185 m2 

        

1.5 
 

1.5m 

15cm 



 99 

6.1.3. ABSTRACT OF COST FOR ONE RCC KELLNER JETTY  
 

Sl. 
No. 

Items  Quantity  Rate 
 

Amount (Rs.) 

1. Casting of RCC M-15 with 
nominal mix of (1:2:4) RCC 
Kellner  Jetty consisting of 
3 member of length 3m 
with 15cm x 15cm square 
cross-section and having 
the reinforcement as per 
detail drawing  

0.223 m3 Rs. 3255/m3 725.86 

2 Providing M.S. 
reinforcement (Tor steel) 
as per approved design 
drawing removal of rust, 
cutting, bending, binding 
including supplying 
annealed wire placing Ms 
road in position complete 
job   

0.02268 MT Rs.42871.00/MT 972.30 

3. Cost of G. I. Wire of 4 m.m 
dia. including carriage and 
labour  

7.52 kg Rs.40/kg 300.80 

4. Proving centering including 
structing proping etc. And 
remvoign after use    

4.185 m2 Rs.283.30/m2 1185.61 

5. PVC Pipe of dia 10mm for 
making hole  

L.S. - 100.00 

6. Labour charge for placing 
of RCC Kellner Jetty at site  

1 Nos. 750/each  750.00 

    4034.57 
Say 4040   
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6.1.4 APPROXIMATE ESTIMATE FOR POLYMER ROPE GABION FILLED WITH 
       NEW GEO SYNTHETIC BAGS OF SIZE 0.75M X 0.45 M (CEMENT BAG SIZE) 
 
6.1.4.1 Total volume of structure  

 = 10 m x 2.0 x 2.5 m  

 = 50m3 

 Assuming one bag occupy 1 cft  

 Volume = 0.0283m3 

 No. of bags for 30m2 volume  

  = 50 /0.0283  

  = 1766.28 nos  ~ 1770nos 

6.1.4.2 Quantity of Bamboo  

 Assuming length of bamboo = 6m and average dia 8 cm 

(a) No of bamboo for vertical bamboo  

 = 20 nos  

      Total length of Bamboo Pile = 20 x 3.5 = 70 m  

(b) No of bamboo for horizontal bamboo as runner  

 Total length of runner = 21m 

 = ( ) 40.3
6

26223.2
=

×+× nos ~  4 nos. 

(c) No of bamboo for lateral ties 

 Length of one ties = 2 + 0.3=2.3 m  

 Total Length tie = 9 x 2.3 = 20.7 

 No of ties = 9 nos 

 Total Length tie + Runner = 21 + 21 = 42m  

 No of Bamboo = 45.3
6

930.2
=

× ~ 4 nos  

 Total no of bamboo (a+b+c) = (20 + 4 + 4) = 28 nos 

6.1.4.3 Size of Polymer rope gabion  

 Providing 10m x 2.0m x 2.5m polymer rope gabion of 10mm dia rope having 

mesh size 200mm x 200mm  
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6.1.5 ABSTRACT OF COST OF ONE POLYMER ROPE GABION FILLED WITH  
NEW GEO SYNTHETIC BAG GABION  

Sl. 
No. 

Items  Quantity  Rate 
 

Amount (Rs.) 

1. Supply of new Geo 
synthetic bags of size 0.75 
m x 0.45 m  

1770 nos Rs.15 each 26,550 

2 Supply of Bamboo of 
average dia of 8 cm  

28 nos Rs.80 each 2240 

3. Labour charge of piling of 
Bamboo 

 70 m Rs.8.9/m  623 

4. Labour charges for fitting 
and fixing of horizontal 
Bamboo as runner and 
lateral ties  

42 m Rs.1.90/m 79.80 

5. Labur charge for filling 
empty new synthetic bag 
with local sand, stiching the 
bags and placing polymer 
rope gabion in water with a 
carrage of  filled bag by 
boat including loading 
unloading and stacking with 
lead of ½ km all complete 
job as per approve design 
specification and direction 
of E/I 

1770 Rs. 8.0/each  14160 

6 Supply of polymer rope 
gabion of size 10m x 2.0m x 
1.5 m of 10mm dia rope and 
having mesh size of 200mm 
x 200mm  

1 nos. 50000 50000 

  93,652.80 
Say 93,650 for 10 m length 

9365 m for 1 m length    
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Fig. 6.1   Plan of Polymer Rope Gabion 

X X 

New Geo-synthetic  
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Section X – X   

Fig. 6.2   Typical Drawing of Polymer Rope Gabion Submerged Vane 
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Fig. 6.3   Typical Layout of RCC Kellner Jetty of 3m length and 15cm thickness 

with 15cm x 15cm  haunch at junction mesh with 4mm GI Wire  
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Fig. 6.4 Details of Longitudinal Reinforcement in RCC Kellner Jetty    
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Fig. 6.5 Detail Layout of Erosion Control Structures at Morigaon Site in the vicinity  
of 61st Km of the left Dyke  
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6.2 DESIGN PHILOSOPHY TO EVOLVE COST EFFECTIVE RIVER 
TRAINING MEASURES IN SITE OF THE BRAHMAPUTRA NEAR 
GAUWAHATI  AIRPORT 

 

6.2.1 PREAMBLE  

 

For the purpose of experimental field study a drifting subsidiary channel of the 

Brahmaputra river hugging the Gauwahati airport( shown in the enclosed satellite 

imagery) has been adopted to test the river response as well as to effect required 

fine tuning to achieve efficacious results. 

 
6.2.2 OBJECTIVES 

 

The basic goal of the proposed field experimental study with very limited intervention 

is broadly spelt out below 

1. To simulate the Brahmaputra river reach based on one dimensional numerical 

model developed by United States Hydrologic Engineering Center (USHEC) 

called HEC- RAS 4.1. The reach length span from Dubri, (Cross section 2) 

and Kobo, (Cross-section 65). Simulation of flow includes the analysis of 

stream bed aggradation and degradation behavior of the critical reach of the 

Brahmaputra River. Based on this flow simulation findings and experimental 

study, training measure are given below  

2. to observe the effect of Jack Jetty Screen for effecting limited siltation and 

partial channel closure. 

3. to test and evaluate the combined action of the package of measures 

comprising bamboo submerged vanes, RCC Jack Jetty field and bamboo 

board fencing on bank protection / near bank modification of fluvial parameter 

and near bank sedimentation. Obviously any limited achievement of near 

bank sedimentation is expected to facilitate & contribute towards land 

reclamation with the help of subsequent consolidation of sediment deposits.  

 
6.2.3 HYDRAULICS OF PROPOSED TRAINING MEASURES  

1. The submerged vane systems made of Jati bamboo is expected to generate 

desired secondary circulation in the stream flow to deflect the heavy sediment 
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laden bottom flow filaments towards the stream bank side resulting in 

sedimentation. The upper flow layers deficient in requisite sediment load are 

forced by the vane generated swirling vortices to move towards the channel 

centerline, thereby causing deepening of the streambed away from the bank. 

This radical modification of stream flow characteristics due to presence of 

submerged vanes acts as a  catalyst in desired reshaping of channel 

topography. It may be highlighted here that the above radical transformation 

involving reversal of flow vortex direction cannot possibly be achieved through 

the conventional spur/ groyne system or any other flow retarding devices such 

as porcupine screens or permeable spur.  

2. The deflected heavy sediment laden flow layers coming from the submerged 

vanes will be intercepted by the jack jetty field comprising the diversion lines & 

the retards to further assist in the dissipation of residual flow energy. 

Obviously the slowed down sediment carrying flow will be induced to deposit 

its sediment load within the compartments of the jack jetty field.  

4. To further help in the desired aim of sedimentation within  the jetty field, 

improvised board fencing method will be put in plane behind the jack jetty 

system & these improvised board fencing is proposed to be made of Jati 

bamboo which is locally available in abundance in Assam.  

 

The above new river training structures presented through the attached four 

numbers of typical drawings which may be further modified appropriately at the time 

of implementation. The layout of the above river training systems can also be seen 

from the attached satellite imageries which also depict the channel changes 

occurring in the study area covering a period from 2005 – 2011.  
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Fig. 6.6 Detail Layout Of River Erosion Control Structures At Proposed Site Of 
The Brahmaputra Near Gauwahati  Airport 
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Fig. 6.9 Typical Layout of RCC Kellner Jetty of 3m length and 15cm 

thickness with 4mm GI Wire  

DETAILS OF LONGITUDINAL REINFORCEMENT IN RCC JACK JETTY 
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Fig. 6.10 Typical Layout of Board Fencing 
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6.2.4 COST ESTIMATE OF PROPOSED SITE OF THE BRAHMAPUTRA NEAR  
 GAUWAHATI  AIRPORT 
 
 
6.2.4.1 Approximate Estimate of Jack Jetty   

Width of river at left channel = 350 m 
Size of one jack jetty = 3 m 

No of jetties required in one row to cover the whole width of the river = 117  
No of jetties required in 5 row to cover the whole width of the river = 585  

No of jetties required in 4 rows in the second tier = 468  
Total no of jetties required to cover the whole width of the river = 1053  

   
Length of the river that is being protected by jetty field = 1000 m 

No of jetties required in one row to cover the1000m length of the river = 333  
No of jetties required in 5 row to cover the1000m length of the river = 1665  

No of jetties required in one row on the second tier to    
cover the1000m length of the river = 333  

No of jetties required in 4 row on the second tier to   
 cover the1000m length of the river = 1332  

   
Length of retard = 50 m 

No of jetties required in one row of retard = 17  
No of jetties required in 5 rows of retards = 85  

No of jetties required in one row of retard on the second tier = 17  
No of jetties required in 4 rows of retards on the second tier = 68  

No of jetties required in one retard = 153  
Spacing of retards = 33 m 

No of retards required to cover 1000m width of the river = 31  
Totals no of jetties required for the retards = 4743  

Total number of jack jetties required for jetty screen and jetty field = 8793  
   

Length of rope required for jetty screens in front = 3150 m 
10%= 315 m 

Length of rope required to tie each jack unit in diversion line jetty fields = 9000 m 
10%= 900 m 

Length of rope required to tie each jack unit in retard jetty fields = 13950 m 
10%= 1395 m 

Total length of rope to tie jack jetties = 28710 m 
10% for dead man acnchor = 2871 m 

Total length of rope = 31581 m 
   

Cost of one prestressed member = 950 RS 
Cost of three prestressed members = 2850 RS 

Apprx. Cost of one jack jetty is = 2850 RS 
Cost of jack jetties is = 25060050 RS 

   
Cost of rope per metre = 140 RS 

Total Cost of rope = 4421340 RS 
   

Total cost of jack jetties = 29481390 RS 
   

6.2.4.2 Approximate Cost Estimate of Submerged Vane   
   

Width of river covered by vanes = 35 m 
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Average depth of water just downstream of Brahmapitra bridge = 5 m 

Height of vane = 2.2 
 
m 
 

Length of vane = 6.6 m 
Vane to vane distance = 7.7 m 

No of vanes in an array = 5 m 
Distance between two arrays = 44 m 

Total no of arrays in 1000m = 23 Nos 
Total number of vanes = 115 Nos 

No of vanes at entry = 10 Nos 
Total number of vanes in the study site = 125 Nos 

Depth of bamboo below river bed = 3 m 
Height of bamboo above river bed = 2.2 m 

size of one Jati bamboo = 7.6 m 
Cost of one Jati bamboo = 60 Rs 

No of bamboo in one vane = 5  
Cost of one Vane = 300 RS 

Cost of submerged Vanes = 37500 RS 
Rs 37,500  

   
   
6.2.4.3 Approximate Cost Estimate for Board Fencing   
   

Length of river to be covered = 1000 m 

Length of one bamboo = 7.6 
 
m 
 

Dia of one bamboo= 3 
 
cm 
 

Dia of cluster of 5 bamboos = 15 
 

 
 

Depth of bamboo below river bed = 3 m 

Height of bamboo above river bed = 5 
 
m 
 

Noof bamboo clusters required for anchor to cover the required length of 
river = 466 

 No of bamboo clusters required for main to cover the required length of river 
= 466 

 
No of horizontal bamboo clusters required along depth = 17 

 

 
 

No of bamboo clusters required horizontally to cover the entire  
  required length of river both for main and anchor = 4474 

 No of ties required = 1564 
 Total number of bamboo clusters required = 6970 
 Cost of one bamboo cluster = 300 RS 

Cost of board fencing = 2091000 RS 
Rs 20,91,000 

 Rate for driving the bamboo by water jetty technique= 425700 RS 

   Expense for site visit = 147000 RS 

   Approximate total cost = 32182590 RS 
Rs 2,70,59,790 

 10%= 3218259 RS 
Approximate total cost = 35400849 RS 

Rs 3,54,00,849 
 



 115 

 
 
 
 
 
 
 

 
 

Fig. 6.11 Layout of Board Fencing  
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CHAPTER – 7 

SUMMARY  
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   Chapter – 7  

SUMMARY 

Using HEC-RAS 4.1 latest version of ‘River Analysis System’ whole reach of Brahmaputra 

River from Dhubri( Cross section 2) to Kobo( Cross section 65)extending a length of 622km 

is modeled and flow in simulation is done. The model is calibrated for seasonal variation of 

roughness coefficient.  Based on the output of this one dimensional numerical model, 

analysis of stream bed aggradation and degradation behavior of critical reach of the 

Brahmaputra River is performed. Model output is used as supplementary information for 

river training work for erosion studies.    This model can also be used for flood propagation 

study with unsteady flow analysis option and for specific bed configuration.  

River training works is proposed for two pilot areas on Brahmaputra River. Those pilot areas 

are, near Airport of Guwahati Bridge and Morigaon site. The proposed river training work 

includes observing the effect of Jack Jetty Screen for effecting limited siltation and partial 

channel closure and to test and evaluate the combined action of the package of measures 

comprising bamboo submerged vanes, RCC Jack Jetty field and bamboo board fencing on the 

bank protection/ near bank modification of fluvial parameter and near bank sedimentation.  

Obviously any limited achievement of near bank sedimentation is expected to facilitate and 

contribute towards land reclamation with the help of subsequent consolidation of sediment 

deposits.   

The submerged vane systems made of Jati bamboo is expected to generate desired secondary 

circulation in the stream flow to deflect the heavy sediment laden bottom flow filaments 

towards the stream bank side resulting in sedimentation. The deflected heavy sediment laden 

flow layers coming from the submerged vanes will be intercepted by the jack jetty field 

comprising the diversion lines and the retards to further assist in the dissipation of residual 

flow energy.  

To further help in the desired aim of sedimentation within the jetty field, improvised board 

fencing method will be put in plane behind the jack jetty system and these improvised board 

fencing is proposed to be made of Jati bamboo which is locally available in abundance in 

Assam.   

  



 118 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

REFERENCES  



 119 

REFERENCES  
 
 

 



 120 

 



 121 

 
 



 122 

 

 



 

 

 

 

FINAL  

RECOMMENDATIONS 



  
 

1. Data analysis and computer simulation studies conducted in the present study have 

succinctly brought out that the prime causative factor of stream bank erosion vis-à-vis 

channel instability processes of the Brahmaputra can be attributed to inherent “sediment 

overloading” of the river fluvial system. In the light of aforesaid observation, it is 

recommended to effectively control sediment ingress into the Brahmaputra river system 

through comprehensive watershed management as well as development programme.  

2. In view of the fact that extensive extent of stream bank-line is under grip of unabated 

erosion process, it is recommended to deploy cost-effective erosion control measures, 

namely single or multiple tier Jack Jetty system along with submerged vanes as per site 

condition feasibility. The required layout of Jack Jetty field may be appropriately devised 

by carefully considering the suitable Jack Jetty Density Index (JJDI) and Jack Jetty 

Submergence Index (JJSI)at the time of implementation of field pilot schemes after duly 

accounting for the prevailing river configuration.   

3. The braiding phenomenon of the Brahmaputra has displayed a sharply increasing trend in 

the recent decades giving rise to highly disturbing incidence of channel instability in the 

wake of stream bank erosion process. It is recommended to urgently undertake measures 

to control the rise of braiding intensity through effective closures of subsidiary channels 

with the help of Jack Jetty Screen and submerged vanes protected by Reno Mattress.  

4. To start with, field pilot studies may be undertaken at two sites – one near Morigaon 

(Bhuragaon) and the other near Guwahati Airport for which preliminary designs have 

been evolved. The preliminary design may be fine tuned at the time of implementation as 

mentioned at para 2 above, as well as after critically reviewing their performance in the 

post flood season. 

5. The R&D endeavour of the present study to evolve ANN models for simulating watershed 

hydrologic response for runoff and sediment is found to be quite encouraging. It is 

recommended to use and periodically improve these models with availability of more 

field data in future.   

6. The mathematical model developed with the help of HEC-RAS 4.1 may be used on trial 

basis to start with for flood forecasting and preliminary channel improvement purposes. 

However, an exclusive comprehensive study is recommended to develop a fully moveable 



bed and bank erosion model which duly accounts for complex flow phenomena such as 

secondary flow, vortex formation, turbulence & mass dispersion, fluvial transients of 

water and sediment, and morphodynamic fluxes as per state-of-the-art. 

7. On account of the prevalent inadequacy of reliable and consistent field data, modelling in 

relation to erosion, sediment inflow and flood forecasting may have certain elements of 

inconsistencies and discrepancies, resulting in fallacious prediction of future scenario. It 

urgently warrants strengthening and upgrading of existing data acquisition and processing 

infrastructure at the ground level of the concerned agencies. Following equipment/data 

should urgently be procured for the existing or proposed data acquisition establishments 

of the field agencies / organizations. 

(i) Data acquisition instruments –  

a. Acoustic Doppler Current Profilers (ADCPs)  

b. Ultrasonic  Flow Meter / Fluorometer 

c. Latest Sediment Sampler  

d. Portable Suspended Sediment Analyzer 

e. Laser Particle Size Analyzer  

f. Total Station and GPS 

g. Automatic Gauge Level Recorder  

(ii) Upgrading of Surveyed Hydrographic Data  

a.   Survey of cross sectional data interval should be of the order of 500m at least 

between two given sections for good quality mathematical model development and 

analysis.   

b. The cross-sections survey should be updated regularly (at say every five years 

interval) depending on observed hydrological events  

c. Flow measurements for high flood events   

(iii) Optical and Microwave Satellite Data Procurement  

a. For monitoring and change detection of spatial and temporal features in the river 

and in the basin including flood plain.  

(iv)      Improving the spatial density of hydro-meteorological data acquisition network  



a.  Hydrological data (Stage, Discharge & Sediment) observation stations may be 

increased by including / restoring sites near Tezpur (Koliabhomora Bridge) , 

Bessamara (Majuli), Bogibeel (New Bridge near Dibrugarh), in addition to the 

existing sites at Pandu &   Jogighopa 

b. The spatial density of Meteorological stations requires to be significantly 

upgraded along with installation of the latest data acquisition and data logging 

systems.  

(v)  Development of Management Information System (MIS) for main stem 

Brahmaputra  along with the flood plain / catchments, tributaries    

8. Capacity building of the technical manpower associated at various levels of river 

management is recommended through periodic professional training on latest advances in 

the technology  

9. Creation of a comprehensive data base comprising all pertinent data & information using 

latest data management system. 

10.  Establishment of an autonomous well-equipped R&D Centre to be manned by highly 

competent manpower for conducting applied research at state-of-the-art level.  

 

 

 
************* 
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